
 2003-2005 Nintendo NTR-06-0088-001-A3
Released: August 10, 2005

TXLib Manual
NITRO Texture Library

Version 1.2.0

The contents in this document are highly confidential
and should be handled accordingly.

TXLib Manual

NTR-06-0088-001-A3 2  2003-2005 Nintendo
Released: August 10, 2005

Contents
1 Overview ...6

1.1 What Is TXLib? ...6
1.2 Objective...6
1.3 Recommended Environment...6

2 NITRO Texture File (NTF) ...7
2.1 NTF Texture Format Types ...7
2.2 NTF File Formats ..7

2.2.1 Binary Format ..7
2.2.2 Text Format..8
2.2.3 Text Format Contents...9

3 TXLib...10
3.1 TXLib Overview...10
3.2 TXLib Structure Diagram...10
3.3 TXLib Class List ..11

3.3.1 CData...11
3.3.2 CByteData ...12
3.3.3 CColorPalette ..13
3.3.4 CColorIndexImage...14
3.3.5 CDirectColorImage ..14
3.3.6 CAlphaImage ...15
3.3.7 CTexture ..15
3.3.8 CNtf..17
3.3.9 CColorProcessor ...17
3.3.10 CDefaultColorProcessor...17

4 Texture Format Conversion ...18
4.1 Converting from Palette Format to Direct..18
4.2 Converting Between Palette Formats..18
4.3 Converting from Direct to Palette Format..19
4.4 Converting from Direct to tex4x4 Format ..19
4.5 Converting from Palette Format to tex4x4 Format ..19
4.6 Converting from tex4x4 Format to Direct ..19
4.7 Converting from tex4x4 Format to Palette Format ..19

5 Color Processor Class...20
5.1 CColorProcessor Function List ...20

5.1.1 int FindNearColor(); ...20
5.1.2 bool ConvertToPaletteType(); ..21
5.1.3 bool ConvertToTex4x4(); ..23

6 TXLibUtility (TXLib High Level Library)..26

TXLib Manual

 2003-2005 Nintendo 3 NTR-06-0088-001-A3
Released: August 10, 2005

6.1 Overview...26
6.2 TXLibUtility Structure Diagram..26
6.3 TXLibUtility List ...27
6.4 CBmp and CTga Function Details ..28

6.4.1 Read Function ...28
6.4.2 GetConvertType Function..28
6.4.3 GetDataByteSizeMax Function..28
6.4.4 Write Function..28
6.4.5 Relation of CBmp Image Formats to CTexture’s Texture Formats ...29
6.4.6 Relationship of CTga Image Formats to CTexture’s Texture Formats..29

6.5 TXLibUtility Function Details ...30
6.5.1 TXLibUtility::Load...30
6.5.2 TXLibUtility::SaveNtf..31
6.5.3 TXLibUtility::Save ..32

7 Sample Code ..33
7.1 Code Example 1 ...33
7.2 Code Example 2 ...34
7.3 Code Example 3 ...35
7.4 Code Example 4 ...36

8 NTF Image Size ..37

Tables
Table 1-1 Environment..6
Table 2-1 List of NTF Texture Format Types...7
Table 3-1 CData.. 11
Table 3-2 CByteData...12
Table 3-3 CColorPalette..13
Table 3-4 CColorIndexImage..14
Table 3-5 CDirectColorImage ...14
Table 3-6 CAlphaImage ..15
Table 3-7 CTexture ...16
Table 3-8 List of Texture Formats..16
Table 3-9 Relationship Between CTexture Elements and the Enabled Texture Formats ..16
Table 3-10 CNtf ...17
Table 5-1 CColorProcessor...20
Table 5-2 List of Parameters used by the CDefaultColorProcessor::ConvertToPaletteType Function21
Table 5-3 List of Parameters used by the CDefaultColorProcessor::ConvertToTex4x4 Function..............................23
Table 5-4 tAlgorithm Algorithm..23
Table 6-1 CBmp..27
Table 6-2 CTga ...27
Table 6-3 TXLibUtility Function ...27

TXLib Manual

NTR-06-0088-001-A3 4  2003-2005 Nintendo
Released: August 10, 2005

Table 6-4 BMP Image Format Types Handled by TXLibUtility::CBmp...29
Table 6-5 TGA Image Format Types Handled by TXLibUtility::CTga ..29
Table 8-1 Relationship between Size of Input Image Data and NTF Output...37

Figures
Figure 3-1 TXLib Structure Diagram ...10
Figure 6-1 TXLibUtility Block Diagram ..26
Figure 6-2 Block Diagram of the TXLibUtility::Load Function..30
Figure 6-3 Block Diagram of the TXLibUtility::SaveNtf Function...31
Figure 6-4 Block Diagram of the TXLibUtility::Save Function ...32

TXLib Manual

 2003-2005 Nintendo 5 NTR-06-0088-001-A3
Released: August 10, 2005

Revision History
Version Revision Date Description

1.2.0 7/01/2004 • Updated TXLib source code.
• Changed data byte width in m_colorPaletteAddress from 2 to 4 bytes.

1.1.0 4/23/2004 • Corrected errors.
• Changed NITRO in header files to NITRO-SampleTools.

1.0.0 3/5/2004 • Revised the manual format.
• Changed the specifications for the color processing class.
• Added the a3i5 texture format.

0.5.0 1/30/2004 • Initial release.

TXLib Manual

NTR-06-0088-001-A3 6  2003-2005 Nintendo
Released: August 10, 2005

1 Overview

1.1 What Is TXLib?
TXLib is the library used for converting BMP (.bmp extension), TGA (.tga extension), and other
image files to binary format NTF (.ntft, .ntfp, and .ntfi extensions) or text format NTF (.c
extension). NTF stands for NITRO Texture File. These files are optimized for embedding into NITRO
programs. However, TXLib is only used for inputting from memory or outputting to memory. Therefore,
another library is required for outputting to files. Separately from TXLib, we have prepared the
TXLibUtility library as a sample of this file output.

1.2 Objective
This library was created to unify the various image files that exist into a proprietary image format, and
to unify the programs used to create NTF. This eliminates the need to create a number of programs in
order to create NTF from image files, saving time and trouble.

1.3 Recommended Environment
TXLib was developed in the following environment. Program in an environment no earlier than the
environment below:

Table 1-1 Environment

OS Compiler

Windows 2000 with Service Pack 4 Visual C++ .net 2003

TXLib Manual

 2003-2005 Nintendo 7 NTR-06-0088-001-A3
Released: August 10, 2005

2 NITRO Texture File (NTF)

2.1 NTF Texture Format Types
NTF texture format types are texture format types that can be used with NITRO. For details on NITRO
texture data structure, see “NITRO Programming Manual.”

For details on the “tex4x4” texture format, refer to “A Description of the NITRO 4x4 Texel Compressed
Texture.” The following table shows the NTF texture formats.

Table 2-1 List of NTF Texture Format Types

Texture Format Content

palette4

palette16

palette256

tex4x4

a3i5

a5i3

direct

4-color palette texture

16-color palette texture

256-color palette texture

4x4 texel compressed texture

a3I5 translucent texture (32-color palette + 3 bit alpha)

a5I3 translucent texture (8-color palette + 5 bit alpha)

Direct color texture

This manual uses the names shown above in the description.

Palette format is used when referring to texture formats other than tex4x4 that have color indices
(palette4, palette16, palette256, a3i5, and a5i3).

2.2 NTF File Formats
NTF supports two types of format: binary and text.

2.2.1 Binary Format

Binary format files consist of raw data with no header. There are three files used for handling texel data,
palette data, and palette index data, respectively. Their names are as follows.

Texel data: filename.ntft

Palette data: filename.ntfp

Palette index data: filename.ntfi

Since they do not contain texture-related information such as texture format and image size, you
cannot load them in TextureViewer. Therefore, in order to preview on a NITRO LCD, it is necessary to
create individual programs for displaying the texture.

TXLib Manual

NTR-06-0088-001-A3 8  2003-2005 Nintendo
Released: August 10, 2005

2.2.2 Text Format

Text format files can collectively handle the three elements — texel data, palette data, and palette
index data — in one file. Although they are larger than binary format, they have the following
advantages:

1. Because it is text data, you can confirm data content with an editor.

2. Input image file name and the time created are recorded. Therefore, you do not have to
remember this type of information.

3. Image size and the converted texture format are recorded. Therefore, you can quickly see what
type of texture it is.

4. They can be built into TextureViewer. Therefore, you can easily preview on a NITRO LCD, even
without programming knowledge.

TextureViewer is a sample program for displaying NTF data on a NITRO LCD. It was created using the
NITRO-SDK and is included in TXLib. For details, see TextureViewer_manual.pdf, found in
TextureViewer\doc.

TXLib Manual

 2003-2005 Nintendo 9 NTR-06-0088-001-A3
Released: August 10, 2005

2.2.3 Text Format Contents

The content of NTF text format is as follows.

// NITRO Texture File
// format: GX_TEXFMT_PLTT256
// width: 128
// height: 128
// original_width: 128
// original_height: 128
// date: Wed Feb 25 10:36:02 2004
// source: ../common/inputFiles/mario_128x128_direct.tga

#include <nitro.h>
#include “textureDataTypedef.h”

const u16 palette256_Palette[256] = {

0x42DF, 0x4A56, 0x7FFF, 0x0010, 0x6962, 0x7FFF, 0x7FFF, 0x0843,
0x0014, 0x0C75, 0x3218, 0x61E4, 0x7FFF, 0x7FFF, 0x7FFF, 0x5D21,

 (omitted)
};

const u8 palette256_Texel[128 * 128 / 1] = {
 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0 line

0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0 line
 (omitted)
};

const tTextureParameter palette256_Parameter = {
 16384, 512, 0,
 GX_TEXFMT_PLTT256, 128, 128, 128, 128};

// texel size, palette size, palette index size
// Format, Width, Height, Actual Width, Actual Height
Code 2-1 NTF Text Format Contents

This is the content of an NTF when a texture format was converted from direct to palette256.

A comment about the NTF contents is included at the beginning of the file, so you can identify the type
of texture data. The following list explains each item.

� format the texture format
� width and height the size of the output NTF image
� original_width and original_height the size of the source input image
� date the creation date
� source the path name of the source input image file

Each element (texel data, palette data, palette index data) is combined into a single file and output. In
this example, because the data was converted to palette256, there is palette data
(palette256_Palette) and texel data (palette256_Texel), but no palette index data.

If you select output for TextureViewer when you output the NTF, TextureViewer information
(tTextureParameter) is also appended. TextureViewer references this information and it is required
for previewing on a NITRO LCD.

tTextureParameter is defined in the textureDataTypedef.h header file. This header file is in
the TextureViewer’s include folder. It is actually used when compiling TextureViewer.

TXLib Manual

NTR-06-0088-001-A3 10  2003-2005 Nintendo
Released: August 10, 2005

3 TXLib

3.1 TXLib Overview
TXLib uses the CTexture class for handling textures. CTexture holds color index, palette, alpha, and
other elements that are required to construct a texture. By providing data and using the functions that
are provided, you can convert texture formats (such as palette4 and direct), reduce palette colors, and
more. In order to use TXLib, first provide BMP, TGA, or other image data as input to a CTexture. After
image processing, the CTexture in TXLib is output in the image format you want. For example, you can
output to memory by passing a CTexture that has been image-processed to the Write function in the
CNtf class that handles NTF.

3.2 TXLib Structure Diagram
The diagram on the following page shows the structure of TXLib. The CTexture class handles texture.
It is made up of six elements from CData to CAlphaImage. Each element class is switched to enabled
or disabled according to CTexture’s texture format. When converting CTexture’s texture format, it uses
CColorProcessor to perform color processing. In TXLib’s initial state, this class has been derived, and
CDefaultColorProcessor is actually performing color processing. Finally, it uses the CNtf function when
outputting an NTF.

CTexture

CNtf

CData

CByteData

CColorPalette

CColorIndexImage

CDirectColorImage

CAlphaImage

CDefaultColorProcessor

CColorProcessor

(Palette Attribute)

(Palette Address)

Figure 3-1 TXLib Structure Diagram

TXLib Manual

 2003-2005 Nintendo 11 NTR-06-0088-001-A3
Released: August 10, 2005

3.3 TXLib Class List
This section describes each of the TXLib classes. In the class table, functions for acquiring member
variables are omitted.

3.3.1 CData

This class holds and manipulates blocks of 8-bit data. This is the most basic element of TXLib. It is
used for color data, color index data, and palette attributes that constitute CTexture.

Table 3-1 CData

Variables

bool

u32

u8

m_available
m_byteSize
m_pData

Whether data can be used

Byte size of data

Data

Functions

void Clear
bool IsAvailable
void Create
void GetValue
void SetValue
void ChangeNumber
void QuickSortTopDown
operator=

Clears memory.

Determines whether data is available for use.

Specifies number of data and creates class.

Gets data.

Sets data.

Resizes the block of data.

Sorts data in ascending or descending order.

Copies another CData object.

TXLib Manual

NTR-06-0088-001-A3 12  2003-2005 Nintendo
Released: August 10, 2005

3.3.2 CByteData

This class holds and manipulates data columns that have byte and multi-byte widths (8-, 16-, 32-bit),
which CData cannot handle. You can specify the number of bytes to use when you create it. You can
specify 1, 2, or 4 bytes. Because it has little functionality, use CData for 1-byte wide data. It is used for
the palette address that constitutes a CTexture.

Table 3-2 CByteData

Variables

bool

u32

u8

u32

u8*

m_available
m_byteSize
m_byteCount
m_number
m_pData

Whether data can be used

Byte size

Data byte width

Data number

Data

Functions

void Clear
bool IsAvailable
void Create
void GetValue
void SetValue
operator=

Clears memory.

Determines whether data is available for use.

Specifies byte width and data number, and creates the class.

Gets data.

Sets data.

Copies the class.

TXLib Manual

 2003-2005 Nintendo 13 NTR-06-0088-001-A3
Released: August 10, 2005

3.3.3 CColorPalette

This handles the color palette. It contains 8 bits of data (CData) for each of red, green, and blue. It is
used as the palette that constitutes a CTexture.

Table 3-3 CColorPalette

Variables

bool

CData

CData

CData

m_available
m_redChannel
m_greenChannel
m_blueChannel

Determines whether data is available for use.

Red data

Green data

Blue data

Functions

void Clear
bool IsAvailable
void Create
void GetValue
void SetValue
void CutCommonColor
void ChangeNumber
int FindColor

void QuickSortTopDown
void CommonLowerBit

operator=

Clears memory.

Determines whether data is available for use.

Specifies byte width and data number, and creates the class.

Gets color values.

Sets color values.

Cuts common colors in the palette to reduce color number.

Changes the data number.

Acquires from the palette the index of the color that is the same as a
specified color value.

Sorts brightness in ascending or descending order.

Converts color values to a bit number that has been pseudo-
specified, and increases common colors.

Copies the class.

TXLib Manual

NTR-06-0088-001-A3 14  2003-2005 Nintendo
Released: August 10, 2005

3.3.4 CColorIndexImage

This handles 8-bit color index data. It is used by the color index image that constitutes a CTexture.

Table 3-4 CColorIndexImage

Variables

bool

u16

u16

CData

m_available
m_width
m_height
m_colorIndexData

Determines whether data is available for use

Image size: width

Image size: height

Color index data

Functions

void Clear
bool IsAvailable
void Create
void GetValue
void SetValue
operator=

Clears memory.

Determines whether data is available for use.

Specifies width and height, and creates the class.

Gets index value.

Sets index value.

Copies the class.

3.3.5 CDirectColorImage

This handles direct color images that have 8 bits each of RGB. It is used as direct color image that
constitutes a CTexture.

Table 3-5 CDirectColorImage

Variables

bool

u16

u16

Cdata

Cdata

CData

m_available
m_width
m_height
m_redChannel
m_greenChannel
m_blueChannel

Determines whether data is available for use.

Image size: width

Image size: height

Red data

Green data

Blue data

Functions

void Clear
bool IsAvailable
void Create
void GetValue
void SetValue
operator=

Clears memory.

Determines whether data is available for use.

Specifies width and height, and creates the class.

Gets color value.

Sets color value.

Copies the class.

TXLib Manual

 2003-2005 Nintendo 15 NTR-06-0088-001-A3
Released: August 10, 2005

3.3.6 CAlphaImage

This handles 8-bit alpha images. It is used as an alpha image that constitutes a CTexture.

Table 3-6 CAlphaImage

Variables

bool

u16

u16

CData

m_available
m_width
m_height
m_alphaChannel

Determines whether data is available for use.

Image size: width

Image size: height

Alpha data

Functions

void Clear
bool IsAvailable
void Create
void GetValue
void SetValue
operator=

Clears memory.

Determines whether data is available for use.

Specifies width and height, and creates the class.

Gets alpha value.

Sets alpha value.

Copies the class.

3.3.7 CTexture

This class handles textures. It holds the elements (from the color index to the palette address)
necessary for textures handled by NITRO. In addition, the current texture format is maintained in
m_type. The list of texture formats is shown in Table 3-8.

Only required elements are enabled from this format; unnecessary ones are disabled. Table 3-9 shows
the relation between each element and the texture formats that enable them.

This texture format can be converted using the Convert function. For details, see Chapter 4 – Texture
Format Conversion.

The color processor class is used in the Convert function. For details, see Chapter 5 – Color Processor
Class.

TXLib Manual

NTR-06-0088-001-A3 16  2003-2005 Nintendo
Released: August 10, 2005

Table 3-7 CTexture

Variables

CColorIndexImage

CColorPalette

CDirectColorImage

CAlphaImage

CData

CByteData

tTLBTextureType

CColorProcessor*

m_colorIndexImage
m_colorPalette
m_directColorImage
m_alphaImage
m_colorPaletteAttribute
m_colorPaletteAddress
m_type
m_pColorProcessor

Color index

Color palette

Direct color image

Alpha image

Color palette attribute

Color palette address

Texture format

Pointer to color processor class

Functions

void Clear
void SetType
void SetColorProcessor
bool Convert
bool IsPaletteType
bool AlignmentImageSize
operator =

Clears memory.

Sets texture format.

Sets color processor class.

Converts texture format.

Determines whether the texture format is a palette format.

Adjusts the image size of the texture to the set size.

Copies the class.

Table 3-8 List of Texture Formats

Texture Format Name Texture Format Contents

kType_palette4
kType_palette16
kType_palette256
kType_tex4x4
kType_a3i5
kType_a5i3
kType_direct

4-Color Palette Texture

16-Color Palette Texture

256-Color Palette Texture

4x4 Texel Compression Texture

a3i5 Translucent Texture (32-color palette + 3-bit alpha)

a5i3 Translucent Texture (8-color palette + 5-bit alpha)

Direct Color Texture

Table 3-9 Relationship Between CTexture Elements and the Enabled Texture Formats

Elements in CTexture Enabled Texture Formats

Color Index Image

Palette

Direct Color Image

Alpha Image

Palette Attribute

Palette Address

All except direct.

All except direct.

direct.

direct, a5i3, and a3i5.

tex4x4.

tex4x4.

TXLib Manual

 2003-2005 Nintendo 17 NTR-06-0088-001-A3
Released: August 10, 2005

CTexture specifications are shown below. Data for the color index and direct color image is arranged
from top to bottom (lines) and left to right (pixel rows). Color values consist of eight bits each for RGB,
for each texel or each palette color. Alpha values consist of eight bits for each texel. The color index
consist of eight bits for each texel. The palette address is the address conforming to NITRO (one
address for two colors in a palette).

3.3.8 CNtf

This class handles NTF. It is used when you want to output NTF.

Table 3-10 CNtf

Functions

bool Write
bool GetDataByteSize

Converts CTexture to NTF data and outputs to memory.

Acquires the memory size required for NTF data output.

3.3.9 CColorProcessor

This class performs color processing. This is an abstract base class. Actual color processing is
performed by a derivative class. For details, see Chapter 5 – Color Processor Class.

3.3.10 CDefaultColorProcessor

This class performs color processing. It is derived from CColorProcessor. In the TXLib initial state, this
class is set to CTexture, and is used to perform color processing. If you want to perform color
processing by some other method, prepare a class that derives from CColorProcessor, and set that
class in CTexture. For details, see Chapter 5 – Color Processor Class.

TXLib Manual

NTR-06-0088-001-A3 18  2003-2005 Nintendo
Released: August 10, 2005

4 Texture Format Conversion
The CTexture::Convert function converts texture formats. This function compares the current
texture format and the conversion texture format, and then calls the corresponding conversion function
(a protected function) and performs the conversion.

4.1 Converting from Palette Format to Direct
This conversion is performed by the CTexture::ChangePaletteTypeToDirect function. The
direct color image is created from the color index and the palette colors that it indicates.

The alpha image is created as follows. When converting from a5i3 or a3i5, it uses the value as it is.
When converting from the palette4, palette16, or palette256 formats, it uses opaque color (0xff). For
direct, be sure to have alpha images. Because the palettes are unnecessary, they will be cleared.

4.2 Converting Between Palette Formats
This conversion is performed by the CTexture::ChangePaletteType function.

Palette and color index conversion processing depends on the palette, as described below.

� When converting from a low palette number to a high palette number (for example, from
palette16 to palette256), only the texture format changes. Note that it does not change the
palette number. For example, even if you convert from palette16 to palette256, the palette
number remains 16 (when the palette number of palette16 is 16).

� Color reduction is necessary when converting from a high palette number to a low palette
number (for example, from palette256 to palette16), and occurs via the following steps.
First, the palette format is converted to direct color data
(CTexture::ChangePaletteTypeToDirect function). Next, the direct color data is
converted to palette format (CTexture::ChangeDirectToPaletteType function).

Alpha images are processed as follows.
� When converting from palette4, palette16, or palette256 to a5i3 or a3i5, create using the opaque

color (0xff).
� When converting from a5i3 or a3i5 to palette4, palette16, or palette256, alpha is not required

and is cleared.

TXLib Manual

 2003-2005 Nintendo 19 NTR-06-0088-001-A3
Released: August 10, 2005

4.3 Converting from Direct to Palette Format
This conversion is performed by the CTexture::ChangeDirectToPaletteType function.

The CColorProcessor::ConvertToPaletteType function that is set in CTexture creates the
palette and color index from the direct color image. See Chapter 5 – “Color Processor Class” for details
on the color processor class.

The direct color image is not needed and is cleared. When converting to palette4, palette16, or
palette256, the alpha image is not needed and is cleared.

4.4 Converting from Direct to tex4x4 Format
This conversion is performed by the CTexture::ChangeDirectToTex4x4 function.

The actual conversion is performed by CColorProcessor::ConvertToTex4x4 function that is set
in CTexture. For details, see Chapter 5 – Color Processor Class. Alpha images and direct color images
are not needed and are cleared.

4.5 Converting from Palette Format to tex4x4 Format
First, palette format is converted to direct color data (CTexture::ChangePaletteTypeToDirect
function). Next, direct color data is converted to tex4x4 (CTexture::ChangeDirectToTex4x4
function).

4.6 Converting from tex4x4 Format to Direct
This conversion is performed by the CTexture::ChangeTex4x4ToDirect function.

First, 3-color (transparent color mode) or 4-color (4-color mode) data is extracted from the palette
address and the palette attributes (CTexture::GetTex4x4Palette function). Next, a direct color
image is created from the 3 colors or 4 colors, and the color index. Transparent texels become black
because the color index value is 3 and the palette color value is 0.

Finally, the palette address, palette attributes, color index, and color palette are cleared because they
are not needed.

4.7 Converting from tex4x4 Format to Palette Format
First, tex4x4 format is converted to direct color data (CTexture::ChangeTex4x4ToDirect function).
Next, direct color data is converted to palette format (CTexture::ChangeDirectToPaletteType
function).

TXLib Manual

NTR-06-0088-001-A3 20  2003-2005 Nintendo
Released: August 10, 2005

5 Color Processor Class
This section describes the color processor class used for texture format conversions.

5.1 CColorProcessor Function List
Below is a list of functions in CColorProcessor, which processes color.

Table 5-1 CColorProcessor

Functions

int FindNearColor

bool ConvertToPaletteType
bool ConvertToTex4x4

Searches the palette for a color near the specified color value
and returns that index. When no color is found, returns -1.

Converts from direct to palette format.

Converts from direct to text4x4.

These functions are pure virtual functions and are not actual functions. To actually perform color
processing, you must prepare a CColorProcessor-derived class and define code for how to color
process in each function. This allows the user to customize color processing.

In TXLib, a color processing class called CDefaultColorProcessor is provided. In the initial state, color
processing can be done with this class.

Below is an explanation of color processing with CDefaultColorProcessor.

5.1.1 int FindNearColor

This procedure is performed with CDefaultColorProcessor.

It calculates the difference for each RGB element between each palette color and the specified color,
and applies a weight to each element (R: 30, G: 59, B: 11).

Using the value obtained in step (1), it searches the palette for a similar color using the least squares
method, and returns its index.

Because FindNearColor always returns an index, an error (-1) is never returned.

In addition, you can specify in an argument the indices that you do not want to select in order not to
return those specific indices (such as transparent color). When no transparent color is used and all
indices are targeted, set the parameter to a value below “-1.”

TXLib Manual

 2003-2005 Nintendo 21 NTR-06-0088-001-A3
Released: August 10, 2005

5.1.2 bool ConvertToPaletteType

In the CDefaultColorProcessor, you can select one of the following conversion methods.

1. Create the palette and color index from the colors used in the texture image without using
transparent color.

2. Create the color index using the parameter pUsePalette as the palette without using transparent
color.

3. Create the palette and color index, mapping the texel of the same color as the parameter
transparentColor to the transparent color. Color 0 is set to transparentColor and is used as the
transparent color.

4. Create the palette and color index using a texel with an alpha value of less than 0x80 as the
transparent color. Color 0 of the palette is set to black (RGB 0,0,0) and is used as the transparent
color.

5. Use the texel with the same color as Color 0 of the parameter pUsePalette as the transparent color
and create the color index using pUsePalette as the palette.

The value of the conversion parameters determines which of these methods you select.

The list of conversion parameters used by ConvertToPaletteType, and the conversion type selected by
that conversion value, are described below.

Table 5-2 List of Parameters used by the CDefaultColorProcessor::ConvertToPaletteType Function

bool

bool

tTLBRGB

TXLib::CColorPalette*

transparencyFlg

alphaColorCutFlg

transparentColor
pUsePalette

Transparent color enable flag (false: do not use
transparent color; true: use transparent color)

Alpha value enable flag (false: texel that is same
color as transparentColor is the transparent color;
true: texel with an alpha value of less than 0x80
is the transparent color).

Color to consider the transparent color.

Palette to use for conversion.

When transparencyFlg is false and pUsePalette is NULL, then Method (1) is selected.

The direct texture image undergoes color reduction until it fits into the texture format conversion palette.
For example, when converting to palette256, color reduction is performed until the palette number can
fit within the 256 colors.

If the number of colors in the texture image after removing common colors is smaller than the palette
number of the created texture, all the colors with the common colors removed are copied directly to the
palette. For example, when converting to palette256, if the number of colors in the texture image after
removing the common colors is 250, those 250 colors are copied directly to the palette.

If the number of colors is greater than the palette number, then the palette is created using color
reduction with the median cut method.

TXLib Manual

NTR-06-0088-001-A3 22  2003-2005 Nintendo
Released: August 10, 2005

This color reduction process is not limited to Method (1) above, but is used whenever a palette is
created (when pUsePalette is NULL).

The palette created last is allocated to the direct color image, and a color index is created.

When transparencyFlg is false and a palette has been specified in pUsePalette, then Method
(2) is selected.

Because the palette is set, only the color index is created. If the palette number of the specified palette
is greater than the palette number held by the created texture, then the extra palettes are cut. For
example, when converting to palette16, if the palette number of the specified palette is 30 colors, then
14 extra colors will be cut and the palette number will be adjusted to 16 colors.

When transparencyFlg is true and alphaColorCutFlg is false, then Method (3) is selected.

transparentColor is put in Color 0 of the palette, that color and the direct color image are
compared, and an alpha image is created. If the color and the direct color image are the same, the
alpha value is set to 0x00; if they are different, the alpha value is set to 0xff. This alpha image is
necessary when not including the color considered transparent in the color reduction algorithm, or
when it is necessary to distinguish between color values and transparent colors when creating a color
index. Specifically, alpha values of less than 0x80 are processed as transparent; values greater than
this are opaque.

The method of creating the palette and color index is the same as Method (1), excluding the
consideration of the alpha value.

When transparencyFlg is true and alphaColorCutFlg is true, then Method (4) is selected.

The palette and color index are created the same as in Method (3). The difference with Method (3) is
setting a color considered transparent (black) in Color 0 of the palette. If there is not enough space in
the palette to insert this color (for example, a 256-color palette is already created when converting to
palette256), then the palette is shifted over one and the color is inserted. For this reason, the end of
the original palette is overwritten.

When transparencyFlg is true and a palette has been specified in pUsePalette, then Method
(5) is selected.

Because the palette is set, the same process as in Method (3) occurs with Color 0 of the palette
considered transparent.

TXLib Manual

 2003-2005 Nintendo 23 NTR-06-0088-001-A3
Released: August 10, 2005

5.1.3 bool ConvertToTex4x4
In the CDefaultColorProcessor, the conversion to tex4x4 is the same as the conversion to palette
format (ConvertToPaletteType function), a processing method can be selected based on the value
of the conversion parameters.

The list of parameters used by ConvertToTex4x4 is shown in Table 5-3.

Table 5-3 List of Parameters used by the CDefaultColorProcessor::ConvertToTex4x4 Function

bool

tAlgorithm

bool

tTLBRGB

tTLBRGB

bool

transparencyFlg

algorithm
alphaColorCutFlg

transparentColor
commonColorRange

compressFlg

Transparent color enable flag (false: do not use
transparent color; true: use transparent color).

Algorithm.

Alpha value enable flag (false: texel that is same
color as transparentColor is the transparent
color; true: texel with an alpha value of less than
0x80 is the transparent color).

Color that is considered transparent.

Range value of standardized colors for the tex4x4
palette when compressing palette number.

Palette number compression enable flag (false:
no compression; true: compression).

tex4x4 palette is the palette used with tex4x4. When linear interpolation is used, only two colors are
indicated. When linear interpolation is not used, four colors are indicated.

Table 5-4 tAlgorithm Algorithm

Function Description

kAlgorithm_fastNotLinear
kAlgorithm_fastLinear
kAlgorithm_roundRobinNotLinear
kAlgorithm_roundRobinLinear

Fast; no linear interpolation.

Fast; with linear interpolation.

Round-robin; no linear interpolation.

Round-robin; with linear interpolation

The following is a step-by-step explanation of the internal process of the ConvertToTex4x4 function.

(1) Create a 1 block direct color image.

One block of direct color image is extracted from all the direct color images. “One block” refers to
a block of 4x4 texels, and 16 colors will be extracted.

(2) When transparent color is enabled, create a one block binary alpha image (0x00 or 0xff).

When transparencyFlg is true, a one block binary alpha image is created. This image is
created to find out which texel in the direct color image is transparent.

There are two methods to create a one-block alpha image: from the color designated transparent
or from the source alpha image.

TXLib Manual

NTR-06-0088-001-A3 24  2003-2005 Nintendo
Released: August 10, 2005

When alphaColorCutFlg is false, an alpha image is created from the color that has been
designated as the transparent color. The color value of the direct color image texel is compared
to the color value of the specified transparentColor. If the color values are the same, then
transparency (0x00) is set as the alpha value and then the alpha image created. If the values are
different, then opacity is set as the alpha value and then the alpha image created.

When alphaColorCutFlg is true, then the source alpha image becomes binary and a new
alpha image is created. If the alpha value of the base alpha image is less than 0x80, a
transparent color (0x00) is used when creating the image; if the value is more than 0x80, then an
opaque color (0xff) is used when creating the image.

When the alpha values for the alpha image created here are opaque (0xff) for all texels, it is
determined that no transparent texels are in that block.

(3) Create a tex4x4 palette from one block.

A less than 4-color tex4x4 palette is created from one block. Although 1 block uses 16 colors, the
common colors are removed from these 16 colors. If the remaining color number is two or less,
then they are copied to the tex4x4 palette. If three or more colors are remaining, a tex4x4 palette
is created using the algorithm specified by “algorithm.”

(4) Create palette attributes.

The characteristics of the block are set in palette attributes according to the color and mode
(transparent color mode or 4-color mode) of the created tex4x4 palette. If there are two or fewer
colors in the tex4x4 palette, then there is linear interpolation. If there are 3 or 4 colors in the
palette, there is no linear interpolation.

(5) Create the palette and palette address.

In the processing of the first block, the created tex4x4 palette is added without modification to the
group of tex4x4 palettes. Because the tex4x4 group must have an even number of colors, if the
added tex4x4 palette has one or three colors, a dummy color (black) is added to the tex4x4 palette
group. Furthermore, the palette address is set at this time. The palette address of the first block is “0.”

For the second and subsequent blocks, a search is made for a palette in the tex4x4 palette
group being created that is the same as the tex4x4 palette of the block. If a matching tex4x4
palette is found, the address of that palette is set as the palette address. If a match is not found,
that tex4x4 palette is added to the tex4x4 palette group, and a new palette address is set.
When palette color values are compared, the range within which colors are judged to be the
same is set in commonColorRange.

commonColorRange has RGB color elements. When determining whether blocks have the
same tex4x4 palettes, if the tex4x4 palettes are within the commonColorRange, they are
designated as the same tex4x4 palette, and the tex4x4 palette is shared. The values of the
commonColorRange elements can be specified in a range between 0 – 31 because they are
used internally by the ConvertToTex4x4 function after multiplying by 8 (because the color
value is pseudo-processed as 5 bit in the function).

compressFlg must be true for this the tex4x4 palette to be a shared process. If
compressFlg is false, tex4x4 palettes are always added resulting in no compression of
palette number. When the tex4x4 palette has a color number of “0” (when the entire texel for the
block is transparent), “0” is set as the palette address and the tex4x4 palette is not created.

TXLib Manual

 2003-2005 Nintendo 25 NTR-06-0088-001-A3
Released: August 10, 2005

(6) Create a color index.

The created tex4x4 palette is allocated to the direct color image and a color index is created.
When the tex4x4 palette has two colors, linearly-interpolated colors are allocated, virtually
creating four colors. These four colors are used to create the color index.

When the texel is transparent (alpha value of less than 0x80), the color index value is set to 3,
which indicates transparency. For all other colors, a similar color is found in the palette using the
CDefaultColorProcessor::FindNearColor function and the appropriate color index is
allocated.

(7) Change the palette number to the actual palette number being used.

The initial tex4x4 conversion initial status secures the maximum palette number (4 colors per
block) of necessary memory in order to create the tex4x4 palette group. For this reason, when a
tex4x4 palette that uses linear interpolation for a block is used, that block has two extra colors in
its palette. To eliminate this excess, the palette number is changed to the actual palette number
being used.

(8) Compress the palette number for the tex4x4 group.

Finally, compress the number of colors in the tex4x4 palette group to under 32,768 colors in
order to prevent the palette number from exceeding the NITRO palette memory.

TXLib Manual

NTR-06-0088-001-A3 26  2003-2005 Nintendo
Released: August 10, 2005

6 TXLibUtility (TXLib High Level Library)

6.1 Overview
The TXLib package contains the ntexconv conversion tool to convert image files to NTF. This tool,
created using TXLib, uses the high-level TXLibUtility library to access TXLib.

TXLibUtility is a library used to pass image file data to TXLib and to output data received from TXLib as
image data or NTF. The following describes how to use TXLibUtility.

To learn how to use the ntexconv tool, see \doc\ntexconv_manual.pdf.

6.2 TXLibUtility Structure Diagram
The following diagram shows the structure of TXLibUtility.

CBmp and CTga are classes for handling BMP and TGA , respectively. They are used to input BMP or
TGA image data to TXLib or to output BMP or TGA image data from TXLib. The Utility function is used
to input and output BMP and TGA image data using files. TXLib’s CNtf also uses the Utility function to
output files.

Figure 6-1 TXLibUtility Block Diagram

TXLib Manual

 2003-2005 Nintendo 27 NTR-06-0088-001-A3
Released: August 10, 2005

6.3 TXLibUtility List
The following table lists the class functions and the TXLibUtility functions.

Table 6-1 CBmp

Function

bool Read
bool Write
bool GetDataByteSizeMax
TXLib::CTexture::tType
GetConvertType

Converts BMP data that is in memory to CTexture.

Converts CTexture to BMP data and outputs to memory.

Acquires the memory size required to output BMP data.

Acquires the conversion texture format.

Table 6-2 CTga

Function

bool Read
bool Write
bool GetDataByteSizeMax
TXLib::CTexture::tType
GetConvertType

Converts TGA data that is in memory to CTexture.

Converts CTexture to TGA data and outputs to memory.

Acquires the memory size required to output TGA data.

Acquires the conversion texture format.

Table 6-3 TXLibUtility Function

Function

bool Load
bool SaveNtf
bool Save
bool ChangeExtName

Loads image data from BMP and TGA files and creates CTexture.

Converts CTexture to NTF data and stores to file.

Converts CTexture to BMP or TGA data and stores to file.

Changes the file path name extension to the specified extension.

TXLib Manual

NTR-06-0088-001-A3 28  2003-2005 Nintendo
Released: August 10, 2005

6.4 CBmp and CTga Function Details
This section explains the processes performed internally by the CBmp and CTga functions. Although
CBmp and CTga are different image formats, the processes are the same. This section uses CBmp to
illustrate these processes.

6.4.1 Read Function
The Read function performs the following processes.

1. The BMP header portion is read into memory, and the BMP image format, image size, and palette
number are loaded from the header portion.

2. CTexture is created using the palette format if the image has a color index, and using direct color
data if the image is 24-bit direct. For example, if palette256, CTexture is created at a size necessary
for the palette and color index, and then data is entered. The texture format is then set to palette256.
If direct, the direct color index is created and data entered. Because an alpha image does not exist
in the source image, it is created as opaque (0xff).

6.4.2 GetConvertType Function

This function obtains the texture format of the BMP output. For example, when the texture format is
tex4x4, there is no corresponding BMP image format, so the format is converted to direct before being
output. This function obtains the texture format, in this case “direct.”

6.4.3 GetDataByteSizeMax Function

This function obtains the memory size necessary to output data to memory. When data is output,
memory of the size obtained by this function is allocated. Because palette numbers are not calculated
at this point, memory size for the maximum palette number is returned, in other words 16 for palette16
or 256 for palette256. The actual memory size is obtained after memory is written to by the following
Write Function.

6.4.4 Write Function

This function converts CTexture data to BMP data and then outputs that data. The following operations
occur internally.

1. When the texture format is not compatible with the BMP image format, the texture format is
converted. For example, tex4x4 is converted to direct because BMP does not have tex4x4 formats.

2. The BMP data header portion is created from the texture format.

3. The created header portion is written to memory.

4. The palette, color index, and direct color image are rearranged as BMP data and output to memory.

5. Finally, the memory size output to memory is returned.

TXLib Manual

 2003-2005 Nintendo 29 NTR-06-0088-001-A3
Released: August 10, 2005

6.4.5 Relation of CBmp Image Formats to CTexture’s Texture Formats
The following table shows the BMP image format types handled by CBmp.

Table 6-4 BMP Image Format Types Handled by TXLibUtility::CBmp

Image Format Description

palette2

palette16

palette256

24bit direct

2-color Color Index

16-color Color Index

256-color Color Index

8-bit per pixel RGB Direct Color Image

Note: CBmp cannot handle RLE-compressed image data.

Input of BMP formats not supported by CTexture is handled as follows:

• palette2 is converted to palette4
• 24-bit direct is converted to direct

BMP output of texture formats not supported by BMP format is handled as follows:

• palette4 and a5i3 are converted to palette16
• a3i5 is converted to palette256
• tex4x4 is converted to 24-bit direct

6.4.6 Relationship of CTga Image Formats to CTexture’s Texture Formats

The following shows the TGA image format types that are handled.

Table 6-5 TGA Image Format Types Handled by TXLibUtility::CTga

Image Format Description

gray

palette256

16bit direct

24bit direct

32bit direct

Grayscale (8-bit Brightness Index)

256-color Color Index

5-bit per RGB Direct Color Image, 1-bit alpha

8-bit per RGB Direct Color Image

8-bit per RGB Direct Color Image, 8-bit alpha

Input to CTexture of TGA formats not supported by CTexture is handled as follows:
� Gray is converted to direct
� 16-bit direct is converted to direct
� 24-bit direct is converted to direct

TGA output of texture formats not supported by TGA is handled as follows:
� palette4 and palette16 are converted to palette256
� a5i3, a3i5, and tex4x4 are converted to 32bit direct

TXLib Manual

NTR-06-0088-001-A3 30  2003-2005 Nintendo
Released: August 10, 2005

6.5 TXLibUtility Function Details
The processes performed internally by TXLibUtility functions are described in the flow charts below.

6.5.1 TXLibUtility::Load

Clear CTexture

Get image file size

Allocate sufficient memory for the file

Read data from file

Determine file format (BMP or
TGA) from file extension

Free Memory

Insert Bmp or Tga data in CTexture

Figure 6-2 Block Diagram of the TXLibUtility::Load Function

1. Clears the current CTexture.

2. Secures memory to load the file data. Uses the TXLibUtility::GetFileSize function to obtain
the memory size necessary to load the data.

3. Data from the file is loaded to the secured memory. When BMP data is loaded, the CBmp Read
function is used, when TGA data is loaded, the CTga Read function is used to enter image data to
CTexture.

4. Finally, the secured memory is released using delete[]. Do not forget to release memory as
failure to do so may lead to memory leaks.

TXLib Manual

 2003-2005 Nintendo 31 NTR-06-0088-001-A3
Released: August 10, 2005

6.5.2 TXLibUtility::SaveNtf

Figure 6-3 Block Diagram of the TXLibUtility::SaveNtf Function

1. Secures memory necessary for saving the file. The TXLib::CNtf::GetDataByteSize function
is used to obtain the memory size necessary to save the file.

2. NTF data is written to the secured memory. Use the CNtf Write function to realign the data order
to NTF data order and output the data to memory. You can select using an argument whether or not
to adjust the NTF image size. See Chapter 8 – NTF Image Size for details on adjusting NTF image
sizes.

3. The data in memory is output to a file in binary or text format using either the
TXLibUtility::SaveNtf_Binary or SaveNtf_Source function. The SaveNtf function
argument selects which format to output.

4. Finally, the secured memory is released using delete[]. Do not forget to release memory as
failure to do so may lead to memory leaks.

TXLib Manual

NTR-06-0088-001-A3 32  2003-2005 Nintendo
Released: August 10, 2005

6.5.3 TXLibUtility::Save

Figure 6-4 Block Diagram of the TXLibUtility::Save Function

This function has the same flow as the SaveNtf function.

When outputting as BMP data, use the CBmp Write function. When outputting as TGA data, use the
CTga Write function.

TXLib Manual

 2003-2005 Nintendo 33 NTR-06-0088-001-A3
Released: August 10, 2005

7 Sample Code
To make the samples more readable, error processing is not performed here. We have also prepared
sample programs in TXLib\build\samples. For practical source samples, please refer to that
location.

7.1 Code Example 1
This sample reads one image file and outputs it in NTF without changing the texture format.

TXLib::CTexture texture;

TXLibUtility::Load (
 &texture,

“../common/inputFiles/mario_128x128_palette256.bmp”) ;

TXLibUtility::SaveNtf (
“outputFiles/after.c”, // output NTF path name
&texture, // CTexture
false, // output text format
NULL, // input image file path name
false, // does not output TextureViewer file
true // alignment NTF image size
) ;

Code 7-1 Code Example 1

This sample uses the Load function to load an image file. It determines whether it is BMP or TGA from
the file name extension, reads the data, and stores it in CTexture. It is converted to NTF and output by
the SaveNtf function. If the third argument is false, output is in text format. If it is true, output is in
binary format. If you input the path name of the input image file in the fourth argument, a record of what
image file was converted will be left in the NTF. You can use NULL if you do not need this information.
Select true for the fifth argument only if you want information for TextureViewer to be output in the file.
Set the sixth argument to true when the NTF image size will be adjusted. See Chapter 8 – NTF
Image Size for details on adjusting NTF Image sizes.

TXLib Manual

NTR-06-0088-001-A3 34  2003-2005 Nintendo
Released: August 10, 2005

7.2 Code Example 2
This sample reads one image file, converts the texture format from palette256 to palette16, and
outputs NTF. It also outputs a BMP file for image confirmation on a PC.

TXLib::CTexture texture;

TXLibUtility::Load (
 &texture,
 “../common/inputFiles/mario_128x128_palette256.bmp”
) ;

texture.Convert (TXLib::CTexture::kType_palette16) ;

TXLibUtility::SaveNtf (
 “outputFiles/after.c”, // output NTF path name
 &texture, // CTexture
 false, // output text format
 NULL, // input image file path name
 false, // does not output TextureViewer file
 true // alignment NTF image size
) ;

TXLibUtility::Save (
 “outputFiles/palette256ToPalette16.bmp”,
 &texture
) ;

Code 7-2 Code Example 2

This Convert function is used to convert the CTexture created with the Load function into any texture
format. This example converts to palette16.

This code outputs NTF with the SaveNtf function, and outputs a BMP file for image confirmation with
the Save function.

TXLib Manual

 2003-2005 Nintendo 35 NTR-06-0088-001-A3
Released: August 10, 2005

7.3 Code Example 3
This sample reads one TGA file, converts the texture format from palette256 to tex4x4, and outputs
NTF.

TXLib::CTexture texture;
TXLib::CDefaultColorProcessor::tConvertFactor factor;

std::memset ((void*) &factor, 0,
 sizeof (TXLib::CDefaultColorProcessor::tConvertFactor)) ;

factor.algorithm =
 TXLib::CDefaultColorProcessor::kAlgorithm_roundRobinNotLinear;

factor.transparencyFlg = true;
factor.alphaColorCutFlg = false;
factor.transparentColor.red = 0xff;
factor.transparentColor.green = 0xff;
factor.transparentColor.blue = 0xff;

factor.commonColorRange.red = 0;
factor.commonColorRange.green = 0;
factor.commonColorRange.blue = 0;
factor.compressFlg = true;

TXLibUtility::Load (
 &texture,
 “../common/inputFiles/mario_128x128_palette256.bmp”
) ;

texture.GetColorProcessor () ->SetConvertFactor (&factor) ;
texture.Convert (TXLib::CTexture::kType_tex4x4) ;

TXLibUtility::SaveNtf (
 “outputFiles/palette256ToTex4x4.c”, // output NTF path name
 &texture, // CTexture
 false, // output text format
 NULL, // input image file path name
 false, // does not output TextureViewer file
 true // alignment NTF image size
) ;

TXLibUtility::Save (
 “outputFiles/palette256ToTex4x4.bmp”,
 &texture
) ;

Code 7-3 Code Example 3

When converting to tex4x4, the conversion parameters structure specifies how the conversion will be
performed. Values are input into each variable of the structure, and set in TXLib using the
SetConvertFactor function. By doing so, the conversion parameter values are used for converting
to tex4x4. Therefore, you must call the SetConvertFactor function before the Convert function. You
can also customize the conversion parameters along with the color processor class. For details, see
Chapter 5 – Color Processor Class.

TXLib Manual

NTR-06-0088-001-A3 36  2003-2005 Nintendo
Released: August 10, 2005

7.4 Code Example 4
This is a sample of customizing the color processor class function, ConvertToPaletteType, that
converts from direct to palette formats.

(in main.cpp)
TXLib::CTexture texture;

TXLibUtility::Load (
 &texture,
 “../common/inputFiles/mario_128x128_direct.tga”
);

CMyColorProcessor colorProcessor;
texture.SetColorProcessor (&colorProcessor) ;

texture.Convert (TXLib::CTexture::kType_palette256) ;

TXLibUtility::SaveNtf (
 “outputFiles/after.c”, // output NTF path name
 &texture, // CTexture
 false, // output text format
 NULL, // input image file path name
 false, // does not output TextureViewer file
 true // alignment NTF image size
) ;

TXLibUtility::Save (
 “outputFiles/after.bmp”,
 &texture
) ;

(in MyColorProcessor.cpp)
bool CMyColorProcessor::ConvertToPaletteType (
 TXLib::CTexture* pTexture
)
{

// Color Processing
 // Create function to convert from direct to palette format
}

Code 7-4 Code Example 4

When you want to customize a function of a color processing class, this prepares an original,
CDefaultColorProcessor-derived color processor class, and overrides the function you want to
customize. In this example, the ConvertToPaletteType function that converts from direct to palette
format is overridden, and the function will perform customized color processing.

In order to use the created function in TXLib, set the color processor class with the
SetColorProcessor function. By doing this, the customized function
CMyColorProcessor::ConvertToPaletteType will be called as the function that converts from
direct to palette format.

The SetColorProcessor function must be called before the Convert function. For details on the
color processor class, see Chapter 5 – Color Processor Class.

TXLib Manual

 2003-2005 Nintendo 37 NTR-06-0088-001-A3
Released: August 10, 2005

8 NTF Image Size
Texture sizes that can be used in NITRO are limited to 8, 16, 32, 64, 128, 256, 512 or 1024 in the
height or width. When NTF data is output (CNtf::Write function), NTF image sizes can be adjusted
to conform to these restrictions or can be output without size restrictions. This selection is made with
an argument in the CNtf::Write function.

The following table describes how NTF is output for input image data sizes when restrictions are added
to the NTF image size.

Table 8-1 Relationship between Size of Input Image Data and NTF Output

• Image size of input image data • NTF Output

• Either height or width is “0.” • Error.

• Either height or width exceeds
“1024.”

• Error.

• Both height or width are between “1”
and “1024” and follow NITRO size
limitations.

• Normal output.

• Both height or width are between “1”
and “1024” but do not follow NITRO
size restrictions.

• Expands the image to the closest NITRO
image size and outputs.

The following is an example of input image data when the image size does not follow the NITRO size
restrictions.

Example: When the Input Image Data Size is 47 x 47

• Input Image Data

• 47x47

• Output NTF

• 64x64

The closest NITRO size for the image size of this input image data is 64 x 64. The NTF image is
expanded to 64 x 64, and the expanded areas are written with data from the edges of the source image.

TXLib Manual

NTR-06-0088-001-A3 38  2003-2005 Nintendo
Released: August 10, 2005

Windows is a registered trademark or trademark of Microsoft Corporation (USA) in the U.S. and other countries.

All other company and product names are the trademark or registered trademark of the respective companies.

© 2003-2005 Nintendo

No part of the contents of this document may be
reproduced, copied, transferred, distributed, or
given without the permission from Nintendo.

	1 Overview
	1.1 What Is TXLib?
	1.2 Objective
	1.3 Recommended Environment

	2 NITRO Texture File (NTF)
	2.1 NTF Texture Format Types
	2.2 NTF File Formats
	2.2.1 Binary Format
	2.2.2 Text Format
	2.2.3 Text Format Contents

	3 TXLib
	3.1 TXLib Overview
	3.2 TXLib Structure Diagram
	3.3 TXLib Class List
	3.3.1 CData
	3.3.2 CByteData
	3.3.3 CColorPalette
	3.3.4 CColorIndexImage
	3.3.5 CDirectColorImage
	3.3.6 CAlphaImage
	3.3.7 CTexture
	3.3.8 CNtf
	3.3.9 CColorProcessor
	3.3.10 CDefaultColorProcessor

	4 Texture Format Conversion
	4.1 Converting from Palette Format to Direct
	4.2 Converting Between Palette Formats
	4.3 Converting from Direct to Palette Format
	4.4 Converting from Direct to tex4x4 Format
	4.5 Converting from Palette Format to tex4x4 Format
	4.6 Converting from tex4x4 Format to Direct
	4.7 Converting from tex4x4 Format to Palette Format

	5 Color Processor Class
	5.1 CColorProcessor Function List
	5.1.1 int FindNearColor
	5.1.2 bool ConvertToPaletteType
	5.1.3 bool ConvertToTex4x4

	6 TXLibUtility (TXLib High Level Library)
	6.1 Overview
	6.2 TXLibUtility Structure Diagram
	6.3 TXLibUtility List
	6.4 CBmp and CTga Function Details
	6.4.1 Read Function
	6.4.2 GetConvertType Function
	6.4.3 GetDataByteSizeMax Function
	6.4.4 Write Function
	6.4.5 Relation of CBmp Image Formats to CTexture’s Texture Formats
	6.4.6 Relationship of CTga Image Formats to CTexture’s Texture Formats

	6.5 TXLibUtility Function Details
	6.5.1 TXLibUtility::Load
	6.5.2 TXLibUtility::SaveNtf
	6.5.3 TXLibUtility::Save

	7 Sample Code
	7.1 Code Example 1
	7.2 Code Example 2
	7.3 Code Example 3
	7.4 Code Example 4

	8 NTF Image Size

