
 2004-2005 Nintendo NTR-06-0226-002-A3
Released: February 2, 2006

NITRO-SDK
Single-Card Play User Guide

Version 1.0.2

The contents in this document are highly
confidential and should be handled accordingly.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 2  2004-2005 Nintendo
Released: February 2, 2006

Table of Contents
1 Introduction..5

1.1 Overview ...5
1.2 Single-Card Play Startup Procedure..5
1.3 Attaching an Authentication Code ...6
1.4 Using the System Call Library and ROM Header ..6
1.5 Transferable Binary Code Size..7
1.6 Accessing the Backup Regions in Game Cards and Game Paks ...7

2 Single-Card Play Operations...8
2.1 Process Flow on the Parent Side ..8

2.1.1 Preparations by the Parent...8
2.1.2 Sending Data and Starting Children ...10

2.2 Reconnecting with the Parent..12
2.3 Other Precautions ...13

2.3.1 Applications with Multiple Communication Modes..13
2.3.2 About the IRQ Stack...13
2.3.3 About the Single-Card Play Child Device Program Overlay ...14

3 The Clone Boot Feature ..15
3.1 About Clone Boot ..15
3.2 Clone Boot Procedure ...16

3.2.1 Placing Data in ROM..16
3.2.2 Authentication Code Attachment ..16
3.2.3 Clone Boot Binary Registration ..18

4 The Sample Program (Multiboot-Model) ...19
4.1 Single-Card Play Parent ..19

4.1.1 Preparing for the Single-Card Play Feature ...20
4.1.2 The Single-Card Play Process ...21
4.1.3 Starting the Parent Application ...42
4.1.4 States of the Parent..45

4.2 Single-Card Play Child ..45
4.2.1 Single-Card Play Child Determination..46
4.2.2 Getting Connection Information at Single-Card Play..46
4.2.3 Starting the Child Application..46

5 The cloneboot Sample Program..49
5.1 Changes to the Program Structure ..50

5.1.1 Unifying the Program Source Directories ...50
5.1.2 Changes to the ROM Specification File..50
5.1.3 Changes to the Makefile...51
5.1.4 Changes to the Program Source..53

List of Tables
Table 4-1 The Parent States..45

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 3 NTR-06-0226-002-A3
Released: February 2, 2006

List of Figures
Figure 1-1 Single-Card Play Schematic ..5
Figure 2-1 Data Reception State Transitions of the Single-Card Play Child .. 11
Figure 3-1 Clone Boot ...15
Figure 3-2 Clone Boot Binary Authentication Procedure ...17

List of Code Examples
Code 3-1 Clone Boot Binary Registration Example..18
Code 4-1 Search for Communication Channel...20
Code 4-2 Initialize the Parent ...22
Code 4-3 Set the Parent User Information and Initialize the MB Library ..22
Code 4-4 Start Parent Operations ..23
Code 4-5 Start Single-Card Play Parent and Register File...24
Code 4-6 Load Program in Memory and Register Program Information ..24
Code 4-7 How to Register File: Open the File..25
Code 4-8 How to Register File: Get Segment Size and Memory ...26
Code 4-9 How to Register File: Read and Register Segment Information, Close File ...27
Code 4-10 Parent Receives Child Notification–Update Connection Information ...29
Code 4-11 Process Connection Request...30
Code 4-12 Accept or Kick Child Connection..31
Code 4-13 Determine Child State, Begin Program Download ...32
Code 4-14 Begin Download Delivery or Cancel Single-Card Play...33
Code 4-15 Disable Interrupts, Begin Download...34
Code 4-16 Verify Child States, Begin Download..35
Code 4-17 Notify when Download Begins and Ends ...36
Code 4-18 Check Whether Children Are Bootable ..37
Code 4-19 Reboot Children when Download Is Done ...38
Code 4-20 Change Parent State, Continue Booting Children..39
Code 4-21 Verify that Download Is Complete, Disconnect Children..40
Code 4-22 End Single-Card Play, Change Parent State, Clear Buffer...41
Code 4-23 End Reboot, Reconnect Wireless Communications ..42
Code 4-24 Initialize Data Sharing, the WM Library, and Wireless Communications..43
Code 4-25 Process Connection Requests...43
Code 4-26 Process Connection Request–Details ...43
Code 4-27 Change State and Share Data ...44
Code 4-28 Check Whether Child Booted by Single-Card Play..46
Code 4-29 Obtain Connection Information–Parent and Child Must Match ..46
Code 4-30 Initialize Data Sharing, the WM Library, and Wireless Communications..46
Code 4-31 Connect Child to Parent, Change State, and Share Data ..47
Code 4-32 Child Connection Details..48

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 4  2004-2005 Nintendo
Released: February 2, 2006

Revision History

Version Revision Date Description

1.0.2 8/8/2005 • Updated changes to numbering for code reference (4.1.1). Moved number 4 to
following line and moved comment to next line.

• No change needed in 2.1.1.1—terminology was already correct.

1.0.1 3/11/2005 • Unified format for describing NITRO-SDK install destination (1)

• Deleted text overlaps with following item (1.3)

• Changed item names (because of use with libsyscall.a) (1.4)

 Corrected text (Supplement related to previous item)

• Corrected text (clearly indicated that startup is same as from Card) (1.5)

• Corrected terminology (AID) (2)

• Corrected MB_StartParentFromId and MB_EndToIdle function names (2.1)

• Corrected GGID and TGID terminology (2.1.1.2)

• Revised description of the maximum number of connected children (2.1.1.3)

• Corrected item format (2.1.1.4)
 Revised text (Supplemented with part about relationship between maximum number of

connected children and number of players)

 Corrected text relating to names for libraries and sample modules

 Deleted text (old restrictions relating to segment data)

• Added text (Supplemented with part about distinguishing multiple communication
modes) (2.3.1)

• Added text (Supplemented with part relating to build switches) (2.3.3)

• Corrected figure and supplemented text about parent-only region (3.1)

• Corrected text (Supplemented with reason for data placement) (3.2.1)

• Corrected text (Corrected mb_parent.h to be mbp) (4)

 Corrected text (To reflect the latest selection of sample code)

• Added text (Supplemented with part about changes to procedure when using
MB_StartParentFromIdle function (4.1)

• Added the section for the cloneboot sample program (5)

1.0.0 10/29/2004 Initial version.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 5 NTR-06-0226-002-A3
Released: February 2, 2006

1 Introduction
The NITRO-SDK includes a series of APIs for use with the Single-Card Play feature. This document
describes how to use the basic Single-Card Play features. (In this document, $NitroSDK represents
the directory in which NITRO-SDK has been installed.)

1.1 Overview
The Nintendo DS (DS) has Single-Card Play capability that allows binary code to be transferred from a
Single-Card Play parent device to a Single-Card Play child device and enables the child device to boot
up without a Game Card.

Single-Card Play is also referred to as "Wireless Multiboot" in developer documentation and SDK
source code files. This feature can be used to download up to 2.5 MB of binary code from a parent
device to the main memory of a child device so that the child device can be booted.

Figure 1-1 Single-Card Play Schematic

Parent Device
(with Card) Child Device

The game program is
downloaded to the main memory

of the child device via the
wireless connection

1.2 Single-Card Play Startup Procedure
To start a game using the Single-Card Play feature, the players should start execution according to the
following procedure.

1. Start the Single-Card Play parent device.
2. Select Single-Card Play from the start menu on the child device and select the parent program

to be downloaded.

However, in order to prevent the execution of illegal code by the IPL, binary code without an attached
authentication code will not execute. To start a child device from Single-Card Play, authentication code
must be attached to the binary code being transmitted. To promote efficient development, the NITRO-
SDK includes mb_child to permit the running of binary code without an authentication code. Use
mb_child.srl included with the NITRO-SDK and follow the procedure below. Use mb_child in the
same way even when executing under a debugging environment.

1. The following is a list of three pre-built programs that are stored in the NITRO-SDK. Write any
one of these programs into the NITRO Flash Card. (If using the debugger, load the binary code
for mb_child.srl into the debugger.)

 $NitroSDK/bin/ARM9-TS/Rom/mb_child.srl
 $NitroSDK/bin/ARM9-TS/Rom/mb_child_simple.srl
 $NitroSDK/bin/ARM9-TS/Release/mb_child_simple.srl

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 6  2004-2005 Nintendo
Released: February 2, 2006

To read about mb_child.srl and mb_child_simple.srl, see the section titled “Pre-Built
Programs" in the Function Reference Manual.

2. Start the Single-Card Play parent device.
3. Start mb_child as the Single-Card Play child device and select the parent program to be

downloaded.

To actually start the game device, an authentication code must be attached to the binary sent to the
child. See section 1.3 for more information.

1.3 Attaching an Authentication Code
Under the DS system, an authentication code must be attached to binary code that starts on the child.
This convention prevents the execution of invalid binary code transmitted wirelessly.

Note: The game device will stop midway through booting (around the time that the Nintendo logo
fades from the screen) if an attempt is made to execute binary code that does not have an
authentication code.

The following procedure can be used to attach an authentication code to binary code to be transmitted:

1. First, create the binary code to send to the child.
2. Send this binary code to the Nintendo authentication server at Nintendo and obtain an

authentication code.
3. Attach the authentication code to the original binary code using

$NitroSDK/tools/bin/attachsign.exe.
4. Use the Single-Card Play parent device to link the binary code obtained in Step 3 and transmit it

to the child device.

This procedure can be used to send code that runs on the parent game device to children. For details
on how to obtain an authentication code, please contact support@noa.com.

1.4 Using the System Call Library and ROM Header
When creating the production version of a ROM, use the System Call library (libsyscall.a) and the
ROM headers (rom_header_****.template.sbin) provided by Nintendo. However, the binary file
for child devices differs from that for parent devices, so in this case it is necessary to use the System
Call library and ROM headers that are included in the NITRO-SDK.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 7 NTR-06-0226-002-A3
Released: February 2, 2006

1.5 Transferable Binary Code Size
The same size restriction that applies to startup from a card applies to binary code for Single-Card Play.
The maximum transferable size for resident code is 2.5 MB for the ARM9 and 256 KB for the ARM7. As
with startup from a card, if data has been compressed with the compstatic tool, the size restriction
applies to the compressed data, not the uncompressed data.

To send binary code that exceeds this size restriction, start the child in Single-Card Play mode and
then download the necessary additional binary code from the parent. However, be sure to follow the
guidelines being given as there are security reasons for restricting the transfer of executable code.

1.6 Accessing the Backup Regions in Game Cards and Game Paks
Technically, the backup region of a Game Card or Game Pak plugged into the parent device can be
accessed from a child device started with Single-Card Play. However, there are some restrictions in
place when doing so. Follow the "Nintendo DS Programming Guidelines" when it comes to actual
operations.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 8  2004-2005 Nintendo
Released: February 2, 2006

2 Single-Card Play Operations
This section describes the procedures and connection sequence necessary to create a Single-Card
Play parent.

The Single-Card Play processes can be implemented using the Single-Card Play (MB) library stored in
the NITRO-SDK. The MB library functions by using the Wireless Manager (WM) library internally, but
other WM features cannot be used at the same time under current conditions.

2.1 Process Flow on the Parent Side
This section describes the preparations made on the parent side before Single-Card Play begins. The
parent prepares to send the binary code according to the following procedure:

1. Select a communication channel
2. Set the parent's parameters
3. Start the parent device communication process
4. Register the child binary information
5. Receive a request from the child
6. Send the binary and boot the child.

Once the child's binary information is registered in Step 4, the parent begins disseminating information
automatically and enters a child-receptive state.

2.1.1 Preparations by the Parent

2.1.1.1 Selecting a Wireless Communication Channel

The recommended method for deciding which wireless communications channel to use is to get the
usable channels with the WM_GetAllowedChannel function, check the signal traffic level on each
channel with the WM_MeasureChannel function, and then select the channel with the most available
bandwidth.

However, at the present time, you cannot use the WM_MeasureChannel function after starting the MB
library because the MB_StartParent function automatically moves the MB library module from the
READY state to the PARENT state when using the MB library, but the WM_MeasureChannel function
can only execute when the WM library is in the IDLE state. It is therefore necessary to put the WM
library module into the IDLE state using the WM_Initialize function before checking the signal traffic
level of channels.

After the communication channel has been selected, there are two methods to start Single-Card Play:

o Terminate the WM library with the WM_End function and then start Single-Card Play.
o Enter the IDLE state using the MB_StartParentFromIdle function and then start Single-

Card Play.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 9 NTR-06-0226-002-A3
Released: February 2, 2006

When using the MB_StartParentFromIdle function, the work buffer size passed to the MB_Init
function may be set as small as WM_SYSTEM_BUF_SIZE bytes as long as the WM_Initialize
function is called separately. Be sure to call the MB_StartParentFromIdle and MB_EndToIdle
functions as well as the MB_StartParent and MB_End functions in pairs.

2.1.1.2 Setting the Parent's Parameters

When starting the Single-Card Play parent device, the GGID and TGID must be set up just as with a
normal wireless communication. The following player information on the parent device, such as the
nickname to be displayed on IPL child screen during Single-Card Play, must also be set.

• Player Nickname
A maximum of 10 characters of UTF16-LE. The same format is used as with nicknames
obtained with the OS_GetOwnerInfo function.

• Favorite Color
This is the color-set number representing the player's favorite colors. This makes use of the
same color set as favoriteColor obtained with the OS_GetOwnerInfo function. For
details, see the reference for the OS_GetFavoriteColorTable function.

• Player Number
The player number for the parent is always 0.

2.1.1.3 Configuring the Maximum Number of Children

The MB library drives wireless communications using the WM library under the assumption that the
default maximum number of devices is 16 (1 parent and 15 children). As a result, if a distributed
program is configured for play by less than 16 devices, it may not be possible to achieve the transfer
efficiency usually available and a situation may develop in which the number of connection requests
from children exceeds the maximum number of players.

If you already know the number of programs distributed from the parent and the maximum number of
players allowed by them, then you can use the MB_SetParentCommParam function to set the
number of child devices that will be allowed to make connections. The maximum AID value for children
to be connected is set using the maxChildren argument of this function. The sendSize argument
can be used in conjunction with the maxChildren argument to freely set the send buffer size to use
for wireless communication within a predetermined time. The size of this buffer ranges between a
minimum of MB_COMM_PARENT_SEND_MIN and a maximum of MB_COMM_PARENT_SEND_MAX.

2.1.1.4 Registering the Child Binary Information

The following information needs to be set when registering the binary that will be sent to the child.

• Pointer to the Distribution Binary Code Data
When a child starts, only binary code allocated as an ARM9 resident module or as an ARM7
resident module in the ROM specification file is transferred. Code necessary to start the child
can be extracted from the binary code using the MB_ReadSegment function. For details on
how to configure resident modules (hereafter referred to as Static segments), see the separate
reference document for makerom.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 10  2004-2005 Nintendo
Released: February 2, 2006

All other binary data must be transferred after booting from the parent to the children using
wireless communications. The WBT library is provided in the SDK as a data transfer protocol, and
it can be used as needed by applications. A sample program in which a child rebuilds its own file
system via wireless communications using the WBT library has been prepared as a module in the
directory $NitroSDK/build/demos/wireless_shared/wfs.

• Game Name
A maximum of 48 characters of UTF16-LE. The string must fit on one line having a length of
185 dots during the IPL display.

• Game Description
A maximum of 96 characters of UTF16-LE. The string must fit on two lines having a length of
199 dots during the IPL display.

• Palette and Image Data for Icons Used to Display Downloaded Games on the IPL.
This is 16-color palette data and 32 dot x 32 dot image data.

• GGID
This is the Game Group ID for notifying children after bootup. The GGID set here is reflected in
the ggid member of the structure that the child can obtain from the
MB_GetMultiBootParentBssDesc function after it boots. The GGID can be used for
reconnecting after bootup.

• Maximum Number of Players
This specifies the maximum number of players (including the parent) displayed on the child's
IPL screen. The total number of players including the parent is not the same as the maximum
number of children, so be careful not to mistake this with the maxChildren argument of the
MB_SetParentCommParam function. (If both functions are called with the same setting for the
number of players, the maximum number of players is equal to maxChildren + 1.)
Also note that this value is only meant for display on the child's IPL screen. The actual number
of children that connect may be less than the value set in the maxChildren argument of the
MB_SetParentCommParam function.

Note that it is necessary when using the MB library to register the child binary using the
MB_RegisterFile function after starting the parent process using the MB_StartParent function.

Up to 16 different child binaries can be registered by a single parent when using the MB library. The
Single-Card Play menu screen of the child shows the various games being delivered.

2.1.2 Sending Data and Starting Children

Once preparations for delivering binary code are complete, the parent waits for a request from a child.
For each child it performs processes in the order: Entry → Download → Boot.

In addition to notification of the child device state via the callback function set with the
MB_CommSetParentStateCallback function, the child device state can also be obtained with the
MB_CommGetParentState (child AID) function.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 11 NTR-06-0226-002-A3
Released: February 2, 2006

Figure 2-1 Data Reception State Transitions and Parent Requests Used with Single-Card Play
Children

MB Child

MB_COMM_PSTATE_CONNECTED

MB_COMM_PSTATE_REQUESTED

MB_CommResponseRequest(MB_COMM_RESPONSE_REQUEST_ACCEPT)
or MB_CommResponseRequest(MB_COMM_RESPONSE_REQUEST_KICK)

MB_COMM_PSTATE_ACCEPTED
or MB_COMM_PSTATE_KICKED

MB_COMM_PSTATE_WAIT_TO_SEND

MB_CommStartSending()

MB_COMM_PSTATE_SEND_PROCEEDED

MB_COMM_PSTATE_SEND_COMPLETE

Connecting

Entry
Request

Scan

MB_CommBootRequest()

MB_COMM_PSTATE_BOOT_STARTABLE

MB_COMM_PSTATE_DISCONNECTED

Status Notification Callback

Message Notification Function

Download

Wait for
download

User
Program

Entry
Completion

Download
completed

Wait for boot

Prepare to
boot

MB_COMM_PSTATE_BOOT_REQUEST

Boot

MB Parent

Figure 2-1 depicts the states of the child and the flow of requests from the parent. A callback is
generated on the parent side every time the child changes states. Be sure to issue the appropriate
command for each state from the parent side based on the state change notification made by this
callback or the state obtained by the MB_CommGetParentState function.

The connection sequence flow between parent and child devices is shown below.

1. Connect
When the IPL Single-Card Play child program connects to the parent, the state changes to
MB_COMM_PSTATE_CONNECTED. The child’s MAC address can be obtained with this callback.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 12  2004-2005 Nintendo
Released: February 2, 2006

2. Entry

When there is an entry request from a child to the parent device, notification of the
MB_COMM_PSTATE_REQUESTED state is sent. The child device then waits for either an
MB_COMM_RESPONSE_REQUEST_ACCEPT or MB_COMM_RESPONSE_REQUEST_KICK message
to arrive from the parent device. If MB_COMM_RESPONSE_REQUEST_ACCEPT is sent, entry
processing is performed and preparations for downloading data are made.

3. Download
When the child completes preparations for downloading data, the parent is notified that the state
has changed to MB_COMM_PSTATE_WAIT_TO_SEND. Once the child is in this state, the parent
can begin sending data for the first time. Be careful not to start transmitting data when the state
is MB_COMM_PSTATE_ACCEPTED. When data transmissions end, the child sends notification that
the state is MB_COMM_PSTATE_SEND_COMPLETE and waits in this state until there is a boot
request.

4. Boot
If the child is in the MB_COMM_PSTATE_SEND_COMPLETE state, it enters the boot process when
the parent issues the MB_CommBootRequest command. Once the parent is notified that the
state is MB_BOOT_STARTABLE, communications between child and parent are completely
severed.

2.2 Reconnecting with the Parent
Since the child’s communication with the parent is severed once the child boots for Single-Card Play,
the connection must be reestablished from the beginning.

Note the following when reestablishing a connection:

• The child’s boot timing
Because MB communication cannot occur at the same time as other WM communication
under the current MB library, the parent device must terminate communication using the
MB_End function after the child device boots up. (The MB_EndToIdle function is used to
return to the IDLE state if the MB_StartParentFromIdle function was used for starting.) In
order to reconnect and start communication between the parent device and child devices after
booting for Single-Card Play, measures such as adjusting the timing of boot requests sent from
the parent to the child are necessary.

• The connection process using parent information
The child can obtain parent information before booting by using the
ReadMultiBootParentBssDesc function. Direct connection to the parent is possible based
on the WMBssDesc obtained this way, but the connection cannot be made if the parent’s GGID
and TGID differ from the GGID and TGID expected by the child device. Furthermore,
communications may not be stable after the connection is established if the maximum size or
the KS and CS flags differ, so be sure to prepare the application side ahead of time. You can
prevent differences in the communication settings between parent and child by specifying the
MAC address (bssid) found in WMBssDesc and rescanning for the parent.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 13 NTR-06-0226-002-A3
Released: February 2, 2006

• Handling TGIDs
We recommend changing the parent device TGID when restarting the parent’s wireless
function to prevent a child device from mistakenly attempting to re-connect to a parent device
before that parent’s wireless function has been restarted and connecting from an unrelated IPL
child device after the parent’s wireless function is restarted.
However, because the TGIDs between parent and child must be synchronized when
connecting without rescanning by the child, be sure to set the TGID for the parent and child
using a method such as incrementing the shared TGID by a fixed value.

• Parent multiboot flag
Multiboot flag information is included in the parent information passed as an argument of the
WM_SetParentParameter function, but do not set this flag under normal circumstances. The
multiboot flag does not need to be set even when restarting the parent’s wireless function and
reconnecting after booting for Single-Card Play

2.3 Other Precautions

2.3.1 Applications with Multiple Communication Modes

If an application has multiple communication modes for both Multi-Card and Single-Card Play (such as
a versus mode for Multi-Card Play and a Single-Card Play mode when using one card), trouble may
occur because the parent can be viewed from different communication modes.

In cases where the child detects multiple communications modes, include ID information in
userGameInfo set by the parent and have the child reference this ID during scanning. Note, however,
that userGameInfo cannot be used with the MB library, so be sure to reference the
WM_ATTR_FLAG_MB flag of WMBssDesc.gameInfo.gameNameCount_attribute to check whether
or not the MB library is being used.

Another method of handling this is to obtain multiple GGIDs and distinguish different communication
modes based on the GGID.

2.3.2 About the IRQ Stack

Please note that all callback functions operate in IRQ mode during wireless communication. When
processing internal to a callback consumes a large amount of stack, the safe thing to do is set the IRQ
stack size slightly larger in the lcf file.

The OS_Printf function used during debugging particularly consumes a large amount of stack, so be
sure to use the OS_TPrintf lite version of the function inside callbacks whenever possible.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 14  2004-2005 Nintendo
Released: February 2, 2006

2.3.3 About the Single-Card Play Child Device Program Overlay

When a program running on a Single-Card Play child device uses the overlay feature, the overlay table
and overlay segments to be included in the child's binary must be received separately from the parent
device. The following points must be observed at this time to ensure the integrity of the received data.

• Specifying the NITRO_DIGEST and NITRO_COMPRESS build switches

The build switches NITRO_DIGEST and NITRO_COMPRESS must be specified in the build of the
Single-Card Play child program. This is required so the NITRO-SDK can accurately confirm that the
overlay table and individual overlay segments correctly match the child's own. If the overlay feature
is used without specifying these build switches, the program will be forced to halt on execution.

Specifying these build switches is equivalent to calling the compstatic.exe tool with the -a
and -c options.

Note that these build switches are only necessary for applications and are ignored in SDK builds.

• Using the FS library functions

In addition to the above build switch specifications, you must also use the FS library functions given
below for overlay operations to guarantee that the NITRO-SDK has correctly checked the integrity
of data.

• Function always used:

 ・FS_AttachOverlayTable

• Function only used when loading is performed synchronously:

 ・FS_LoadOverlay

• Functions only used when loading is performed asynchronously:

 ・FS_LoadOverlayInfo
・FS_LoadOverlayImage or FS_LoadOverlayImageAsync
・FS_StartOverlay

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 15 NTR-06-0226-002-A3
Released: February 2, 2006

3 The Clone Boot Feature
A clone boot feature that sends the Static segment of the parent device without modification to the child
device and then boots the child for Single-Card Play is provided in the SDK. This section describes the
clone boot procedure.

3.1 About Clone Boot
When clone boot is used, Static segments that are the same as the parent’s are distributed to children.
The parent and the booted children determine whether or not they are a Single-Card Play child device
using the MB_IsMultiBootChild function. The process then branches. Data that is not included in
the Static segment must be obtained by reconnecting to the parent after booting and then using the
WBT library.

Note: As described in section 3.2, part of the Static segment is for the dedicated use of the parent.

Figure 3-1 Clone Boot

* Normal DS Download Distribution

Parent Device (with Card)

Data File

Data File

* Clone Boot

Parent Device (with Card) Child Device

Child Device

Child Overlay Region

Child Static Region

Parent Overlay Region

Parent Static Region

Child Static Region

Parent/Child Overlay
Region

Parent/Child Static Region
Parent/Child Static Region

The Child binary Static segment is
distributed during DS Download Play

The necessary data is transferred as
required using the WBT library

The Parent/Child-shared Static
segment is distributed during DS
Download Play

The necessary data is transferred as
required using the WBT library

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 16  2004-2005 Nintendo
Released: February 2, 2006

3.2 Clone Boot Procedure
The procedure for clone boot is described below.

3.2.1 Placing Data in ROM

Programs that support the clone boot feature can boot a Single-Card Play child in the same way they
are booted from a card. The Multiboot library therefore provides security measures that are meant to
avoid the complete reproduction of a game from the delivered data.

Programs that support the clone boot feature treat the data placed in the card's secure region
(0x5000–0x6FFF) as data for the dedicated use of the parent and do not include it in the data delivered
for Single-Card Play. As a security measure to prevent the reproduction and duplication of commercial
programs, please use this region to store data that will definitely be used by the parent but not by any
children. For details on configuring this parent-only region and storing data here, see the description of
the cloneboot sample program in Chapter 5.

For details about the secure region found on cards, see the Programming Manual.

3.2.2 Authentication Code Attachment

Normal Single-Card Play operations on a DS require that the binary for the child device has an
authentication code attached. Clone boot also requires an attached authentication code.

In order to perform clone boot authentication, you must first obtain libsyscall.a used on the
commercial version of the parent device and then the binary file (called libsyscall_c.bin below)
corresponding to libsyscall for the clone child.

Executing $NitroSDK/tools/bin/emuchild.exe on the srl file created in the build extracts only
the static segment necessary for Single Card Play and adds libsyscall_c.bin for children to
create a binary file for signatures. (This binary file is henceforth referred to as srl.) Perform the same
signature procedure on this file as used for normal Single-Card Play authentication, and attach the
authentication code obtained to the original srl file.

Since the signature is inserted in the proper location with attachsign when padding is performed
using RomFootPadding during ROM creation, the size of the srl file will not increase as long as
there is enough space to insert the signature.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 17 NTR-06-0226-002-A3
Released: February 2, 2006

Figure 3-2 Clone Boot Binary Authentication Procedure

Authentication
Server

emuchild

attachsign

libsyscall_c.bin
for cloned Child

srl file for cloned
Child

Authenication
Code

srl File

Final ROM
srl

libsyscall.a
for Parent

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 18  2004-2005 Nintendo
Released: February 2, 2006

3.2.3 Clone Boot Binary Registration

Clone boot is activated by passing NULL as the child device binary file pointer when using the
MB_GetSegmentLength and MB_ReadSegment functions in the MB library. Other processing is
exactly the same as normal Single-Card Play.

Code 3-1 Clone Boot Binary Registration Example

// Obtain clone boot data segment size
bufferSize = MB_GetSegmentLength(NULL);
if (bufferSize == 0)
{

return FALSE;
}
// Secure Memory
sFilebuf = OS_Alloc(bufferSize);
if (sFilebuf == NULL)
{

return FALSE;
}
// Extract segment information
if (! MB_ReadSegment(NULL, sFilebuf, bufferSize))
{

OS_Free(sFilebuf);
 return FALSE;
}
// Register download program
if (! MB_RegisterFile(gameInfo, sFilebuf))
{

OS_Free(sFilebuf);
 return FALSE;
}

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 19 NTR-06-0226-002-A3
Released: February 2, 2006

4 The Sample Program (Multiboot-Model)
multiboot-Model is a sample program in which a parent sends a program to a child using the
Single Card Play feature, and then data sharing communications between the parent and the child are
performed by the sent program.

This chapter describes the following topics regarding the parent:

1. Preparing for the Single-Card Play feature
2. Initializing the parent
3. Starting parent operations
4. Waiting for connection from a child
5. Sending the program to the child
6. Restarting the child
7. Starting the parent application
8. States of the parent

This chapter then describes the following topics regarding the child:

1. Detecting Single-Card Play children
2. Getting connection information during Single-Card Play
3. Starting the child application

In the sample program, the series of MB library-related processes necessary to the parent for Single-
Card Play are collected together in module format under
$NitroSDK/build/demos/wireless_shared/mbp. Please use this module when actually
creating programs that utilize the Single-Card Play feature. Note that you will also need to use wh.h,
the Wireless Manager's wrapper module, when you use this module. For details about wh.h, see the
"Wireless Communications Tutorial."

4.1 Single-Card Play Parent
This section describes the processing required of a parent using the Single-Card Play feature by
tracing the control flow of the sample program.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 20 
Released: February 2, 2006

4.1.1 Preparing for the Single-Card Play Feature

As mentioned in section 2.1.1.1, an open communication channel must be found before initializing the
MB library to use the Single-Card Play feature.

The program code shown below searches for a communication channel. (Comments in the sample
program that are unrelated to this description are omitted here.)

Code 4-1 Search for Communication Channel

static void GetChannelMain(void)
{

(void)WH_Initialize();

while (TRUE)
 {

switch (WH_GetSystemState())
 {

//---
 // Initialization complete
 case WH_SYSSTATE_IDLE:
 (void)WH_StartMeasureChannel();
 break;

//---
 // Channel search complete
 case WH_SYSSTATE_MEASURECHANNEL:
 {

sChannel = WH_GetMeasureChannel();
 (void)WH_End();
 }

break;

//---
 // End WM
 case WH_SYSSTATE_STOP:

/* Go to Multiboot once WM_End is completed */
 return;
 //---
 // Busy
 case WH_SYSSTATE_BUSY:
 break;
 //---
 // Error generation
 case WH_SYSSTATE_ERROR:
 (void)WH_Reset();
 break;
 //---
 default:
 OS_Panic("Illegal State\n");
 }

SVC_WaitVBlankIntr(); // Wait for V-Blank interrupt
 }}

The process begins at 1 using the WH_Initialize function to initialize the wireles
feature. Once the send and receive buffers necessary for wireless communication a
initialized and the wireless communications hardware is initialized, the WH_Initia

2

3

4

1

2004-2005 Nintendo

s communication
re secured and
lize function

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 21

changes the WM library state to IDLE.

Once the WM library state becomes IDLE (the state at 2), the WM_MeasureChannel function can be
used to check the signal traffic level on each channel. In the sample program, the
WH_StartMeasureChannel function is called to search for the channel with the lowest traffic level.

Once the search for a channel ends (the state at 3), the result of the search is obtained using the
WH_GetMeasureChannel function. Since the search is complete and the communication channel is
secured, end processing for the WM library is performed by calling the WH_End function. The WM
library must be quit at this point because the MB library and the WM library cannot be used
simultaneously.

Once the WM library is closed (the state at 4), code stops searching for a communication channel and
moves on to Single-Card Play processing.

For the rest of the procedure, you can simply move to the IDLE state if the
MB_StartParentFromIdle function is being used. The program code is changed as shown below,
exiting the process at the state at 3.

//---
 // Channel search complete
 case WH_SYSSTATE_MEASURECHANNEL:
 /* Move to MultiBoot process while maintaining IDL
 return;
 //---
 // Quit WM
 ...

4.1.2 The Single-Card Play Feature

Using the wireless channel that was just obtained, the Single-Card Play featur
processes are carried out to accept children, deliver the download, and restart

4.1.2.1 Initializing the Parent

The information delivered in the download, icon information, Single-Card Play
information registered for the GGID, the communication channel obtained in th
the TGID are all used to initialize the parent.

To prevent connections from unexpected child devices, we recommend that a
assigned each time the parent device is started.

The following program fragment initializes the parent. (Comments in the samp
this description are omitted.)
3

NTR-06-0226-002-A3
Released: February 2, 2006

E state */

e is initialized and other
 the children.

 game registration
e search process, and

different TGID value be

le program unrelated to

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 22
Released: February 2, 2006

Code 4-2 Initialize the Parent

static BOOL ConnectMain(u16 tgid)

{

MBP_Init(mbGameList.ggid, tgid);

while (TRUE)
 {

--- Omitted ---
 }
}

In the sample program, the MBP_Init function initializes the parent and sets the necessary
information (in step 1 above). The MBP_Init function sets the parent player information to be
displayed on the screens of the children and initializes the MB library.

Code 4-3 Set the Parent User Information and Initialize the MB Library

void MBP_Init(u32 ggid, u16 tgid)
{

/* Set parent information to appear on screens of children */
 MBUserInfo myUser;

OSOwnerInfo info;

OS_GetOwnerInfo(&info);
myUser.favoriteColor = info.favoriteColor;

 myUser.nameLength = (u8)info.nickNameLength;
 MI_CpuCopy8(&myUser.name, info.nickName, OS_OWNERINFO_NICK

myUser.playerNo = 0; // Parent is number 0

// Initialize the status information
 mbpState = (const MBPState) { MBP_STATE_STOP, 0, 0, 0, 0,

/* Begin MB parent control. */
 // Secure MB work region.
 sCWork = OS_Alloc(MB_SYSTEM_BUF_SIZE);

if (MB_Init(sCWork, &myUser, ggid, tgid, MBP_DMA_NO)
 != MB_SUCCESS)
 {

OS_Panic("ERROR in MB_Init\n");
 }

MB_CommSetParentStateCallback(ParentStateCallback);

MBP_ChangeState(MBP_STATE_IDLE);
}

Using the MBP_Init, function, you can set the parent’s player information regard
nickname and favorite colors as obtained from the IPL owner information. For mo
section 2.1.1.2 "Setting the Parent's Parameters."

In step (4), a work region is allocated for use by the MB library and then the MB_I
to initialize the MB library.

In step (5), a callback function is set for changing the parent state as notified by t
Processing for the notified parent state is performed inside this callback function.

2

3

4

5

NAME_MAX * 2);
 0, 0 };
 2004-2005 Nintendo

ing the player’s
re information, see

nit function is used

he MB library.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 23

As for the rest of the procedure, because the IDLE state is maintained when using the
MB_StartParentFromIdle function as described above in section 4.1.1, the amount of memory
allocated can be reduced by changing the previously described program as shown below. (However,
there are no particular problems with having a buffer that is too big.)

 // Secure MB work region.
 sCWork = OS_Alloc(MB_SYSTEM_BUF_SIZE - WM_SYSTEM_BUF_SIZE);

...

4.1.2.2 `The Start of Operations by the Parent

After the MB library is initialized by the MB_Init function, the next step is to start a DS device as the
Single-Card Play parent and register the file to use for wireless downloads.

The following program code starts the operations of the parent. (Comments in the sample program
unrelated to this description have been omitted.)

Code 4-4 Start Parent Operations

static BOOL ConnectMain(u16 tgid)
{

--- Omitted ---

while (TRUE)
 {

switch (MBP_GetState())
 {

//---
 // IDLE state
 case MBP_STATE_IDLE :

{
MBP_Start(&mbGameList, sChannel);

 }
break;

--- Omitted ---

}

}
}

1

N
Releas
4

TR-06-0226-002-A3
ed: February 2, 2006

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 24 
Released: February 2, 2006

After processing by the MBP_Init is complete (the state in step 1), the MBP_Start function starts the
Single-Card Play feature and registers the information for the program that will be wirelessly
downloaded after the parent has accepted connections from children.

Code 4-5 Start Single-Card Play Parent and Register File

void MBP_Start(const MBGameRegistry *gameInfo, u16 channel)
{

SDK_ASSERT(MBP_GetState() == MBP_STATE_IDLE);

MBP_ChangeState(MBP_STATE_ENTRY);
 if (MB_StartParent(channel) != MB_SUCCESS)

{
MBP_Printf("MB_StartParent fail\n");

 MBP_ChangeState(MBP_STATE_ERROR);
 return;
 }

/* --
 * Initialized when MB_StartParent() is called.
 * You must register MB_RegisterFile() after MB_StartParent()
 * --

/* Register download-program file information. */
if (! MBP_RegistFile(gameInfo))

 {
OS_Panic("Illegal Single-Card Play gameInfo\n");

 }
}

In step 3, the MB_StartParent function is called with the communication channel
argument to start operations as the Single-Card Play parent.

Because the download program information is initialized when the MB_StartPare
you must call the MB_RegisterFile function to register the download program inf
MB_StartParent function has been called.

In step 4 of the sample program, the MBP_RegistFile function is called to load th
sent for Single-Card Play into main memory and register download program informa

The download program information used in the sample program is configured as sh

Code 4-6 Load Program in Memory and Register Program Information

/* This is the program information the demo downloads */
const MBGameRegistry mbGameList =
{

"/child.srl", // Child binary code
 (u16*)L"DataShareDemo", // Game name
 (u16*)L"DataSharing demo", // Description of the game content
 "/data/icon.char", // Icon character data
 "/data/icon.plt", // Icon palette data
 WH_GGID, // GGID
 MBP_CHILD_MAX + 1, // Maximum number of players
};

If the MB_StartParentFromIdle function is being used, the code at 3 is changed
to handle those changes described in sections 4.1.1. and 4.1.2.

3

4

----------- *

.
----------- */

n

2004-2005 Nintendo

specified as an

t function is called,
ormation after the

e binary code to be
tion.

own below:

s

 as shown below

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 25

 MBP_ChangeState(MBP_STATE_ENTRY);
 if (MB_StartParentFromIdle(channel) != MB_SUCCESS)

{
...

Next, a description is given regarding the registration of download program inf
process flow in the MBP_RegistFile function.

In step 5, the File System is used to open the download file to be registered so

The MBP_RegistFile function also supports the clone boot feature (described
name received is NULL, software will behave as if a clone boot has been spec

Code 4-7 How to Register File: Open the File

static BOOL MBP_RegistFile(const MBGameRegistry* gameInfo)
{

FSFile file, *p_file;
 u32 bufferSize;
 BOOL ret = FALSE;

/*
 * In accordance with the specification for this function
 * romFilePathp is NULL, it operates as a clone boot. Oth
 * the specified file is treated as the child program.
 */
 if gameInfo->romFilePathp
 {

p_file = NULL;
 }

else
 {

/*
 * The program file must be read by FS_ReadFile().
 * Normally, the program is saved as a file in CARD-RO
 * this is not a problem. However, if you anticipate
 * a special MultiBoot file system, deal with the situ
 * using FSArchive to construct an independent archive
 */

FS_InitFile(&file);
 if (! FS_OpenFile(&file, gameInfo->romFilePathp))

{
/* File cannot be opened */

 OS_Warning("Cannot Register file\n");
 return FALSE;
 }

p_file = &file;
 }

--- Omitted ---
}

Next, the MB_GetSegmentLength function obtains the size of the segment in
then memory is allocated for loading the segment information in step 7.

Since only one file is maintained for the segment information in the sample pro
to processing that maintains multiple sets of segment information if you plan to
download files.
1

NTR-06-0226-002-A3
Released: February 2, 2006

ormation by tracing the

 it can be loaded.

 below). If the file path
ified.

, if
erwise,

M, so
there being,
ation by
.

formation in step 6 and

gram, you must switch
 register multiple

5

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 26  2004-2005 Nintendo
Released: February 2, 2006

Code 4-8 How to Register File: Get Segment Size and Memory

static BOOL MBP_RegistFile(const MBGameRegistry* gameInfo)
{

FSFile file, *p_file;
 u32 bufferSize;
 BOOL ret = FALSE;

--- Omitted ---

/*
 * Get the size of the segment information.
 * If download program is not legal, 0 is
 * returned for the size.
 */

bufferSize = MB_GetSegmentLength(&file);
if (bufferSize == 0)

 {
OS_Warning("specified file may be invalid format.\"%s\"\n",

 gameInfo->romFilePathp);
 }

else
 {

/*
 * Secure memory for loading the download program's segment
 * information. If file has been registered successfully,
 * this region will be used until MB_End() is called.
 * If the memory size is plenty large enough, it can be
 * prepared statically.
 */
 sFilebuf = (u8*)OS_Alloc(bufferSize);

if (sFilebuf == NULL)
 {

/* Failure to secure buffer for storing segment information */
 OS_Warning("can't allocate Segment buffer size.\n");
else }

--- Omitted ---

}

The segment information is read from the file using the MB_ReadSegment function in step 8 and
registered using the MB_RegisterFile function in step 9. Once the download file is registered, the
open download file is closed in step 10 because it is no longer needed.

6

7

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 27 NTR-06-0226-002-A3
Released: February 2, 2006

Code 4-9 How to Register File: Read and Register Segment Information, Close File

static BOOL MBP_RegistFile(const MBGameRegistry* gameInfo)
{

--- Omitted ---

/*
 * Extract segment information from file.
 * This extracted information must remain resident in
 * main memory while the download program is being delivered.
 */
 if (! MB_ReadSegment(&file, sFilebuf, bufferSize))

{
/*

 * Segment extraction from illegal file will fail.
 * If size is obtained successfully but the extraction
 * process fails anyway, it may be because some change has
 * been made to the file handle. (File closed,
 * location seek, etc.)
 */

OS_Warning(" Can't Read Segment\n");
 }

else
 {

/*
 * Register Download program with extracted segment
 * information and MBGameRegistry.
 */

if (! MB_RegisterFile(gameInfo, sFilebuf))
{

/* Registration fails due to illegal program information */
 OS_Warning(" Illegal program info\n");
 }

else
 {

/* Process has ended correctly */
 ret = TRUE;
 }

}
if (!ret)

 OS_Free(sFilebuf);
 }

}
/* Close file if not a clone boot */

 if (p_file == &file)
 {

/*
 * Segment extraction from illegal file will fail.
 * If the extraction process fails even though the
 * size has been obtained successfully, it may be
 * because some change has been made to the file handle.
 * (File close, location seek, ...)
 */

OS_Warning(" Can't Read Segment\n");
 (void)FS_CloseFile(&file);
 OS_Free(sFilebuf);
 return FALSE;
 }

8

9

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 28  2004-2005 Nintendo
Released: February 2, 2006

 /*
 * Register download program with extracted
 * segment information and MBGameRegistry.
 */

if (! MB_RegisterFile(gameInfo, sFilebuf))
{

/* Registration fails due to illegal program information */
 OS_Warning(" Illegal program info\n");
 (void)FS_CloseFile(&file);
 OS_Free(sFilebuf);
 return FALSE;
 }

// Close the file
 (void)FS_CloseFile(&file);

return TRUEret;
}

At this point, the game device begins operating as a Single-Card Play parent and the registered
download file is distributed to children via download.

4.1.2.3 Waiting for a Connection from the Child

Once the game device begins operating as a Single-Card Play parent, it processes connection
requests from children.

The callback function set with MB_CommSetParentStateCallback is notified of connection
requests from children as given in the code described in section 4.1.2.1. Since a variety of notifications
in addition to connection requests from children are posted to this callback function, processing
appropriate for each type of notification is required.

In the sample program, the state in which the parent waits for and accepts connection requests from
children is defined as “MBP_STATE_ENTRY (accepting connection requests).”

Connection requests from children are denied if the value returned by the MBP_GetState function
(used to get the parent state) is other than MBP_STATE_ENTRY.

There are two states in which children make connection requests:

� MB_COMM_PSTATE_CONNECTED, which indicates that the child is connected to the parent
� MB_COMM_PSTATE_REQUESTED, which indicates an entry request as a Single-Card Play child

In the sample program, information for managing a child’s connection
(mbpState.connectChildBmp) is updated when the parent receives notification of
MB_COMM_PSTATE_CONNECTED from the child in question.

10

9

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 29 NTR-06-0226-002-A3
Released: February 2, 2006

Code 4-10 Parent Receives Child Notification–Update Connection Information

static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{

switch (status)
 {

//---
 // Instant notification of child connection
 case MB_COMM_PSTATE_CONNECTED:
 {

// Parent does not accept connection except in entry reception state
 if (MBP_GetState() != MBP_STATE_ENTRY)
 {

break;
 }

MBP_AddBitmap(&mbpState.connectChildBmp, child_aid);
 // Store child's MacAddress
 WM_CopyBssid(((WMStartParentCallback*)arg)->macAddress,
 childInfo[child_aid - 1].macAddress);
 childInfo[child_aid - 1].playerNo = child_aid;
 }

break;
 }
}

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 30  2004-2005 Nintendo
Released: February 2, 2006

When notification of MB_COMM_PSTATE_REQUESTED is posted in a callback function, a decision is
made to either accept (2) or deny (1) the entry request.

In the sample program, except in cases where the entry request is denied due to the state of the parent,
all entry requests are accepted using the MBP_AcceptChild function and the information for
managing child entry requests is updated (mbpState.requestChildBm). The player information of
children is obtained using the MB_CommGetChildUser function.

Code 4-11 Process Connection Request

static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{

switch (status)
 {

//---
 // Instant notification of entry request from child
 case MB_COMM_PSTATE_REQUESTED:
 {

const MBUserInfo* userInfo;

// If the parent is not in an entry-accept state, the child
 // requesting entry is kicked out without being checked.
 if (MBP_GetState() != MBP_STATE_ENTRY)
 {

MBP_KickChild(child_aid);
break;

 }

// Accept child's entry
 mbpState.requestChildBmp |= 1 << child_aid;

MBP_AcceptChild(child_aid);

// The timing of MB_COMM_PSTATE_CONNECTED is such that UserInfo
 // is not set, so MB_CommGetChildUser has no meaning unless it
 // is called after state is REQUESTED.
 userInfo = MB_CommGetChildUser(child_aid);
 if (userInfo != NULL)
 {

MI_CpuCopy8(userInfo, &childInfo[child_aid - 1].user, sizeof(MBUserInfo));
 }

MBP_Printf("playerNo = %d\n", userInfo->playerNo);
 }

break;
 ｝
}

If the connection request from a child is accepted, the MB_CommResponseRequest function notifies
the child by posting MB_COMM_RESPONSE_REQUEST_ACCEPT. If the connection request is denied, the
function notifies the child by posting MB_COMM_RESPONSE_REQUEST_KICK.

1

2

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 31
Rel

In the sample program, the information for managing child connections is updated when the notification
is posted to the child.

Code 4-12 Accept or Kick Child Connection

void MBP_AcceptChild(u16 child_aid)
{

if (! MB_CommResponseRequest(child_aid, MB_COMM_RESPONSE_R
 {

// If a request fails, disconnect that child.
 MBP_DisconnectChild(child_aid);
 return;
 }

MBP_Printf("accept child %d\n", child_aid);
}

void MBP_KickChild(u16 child_aid)
{

if (! MB_CommResponseRequest(child_aid, MB_COMM_RESPONSE_R
 {

// If a request fails, disconnect that child.
 MBP_DisconnectChild(child_aid);
 return;
 }

{
OSIntrMode enabled = OS_DisableInterrupts();

mbpState.requestChildBmp &= ~(1 << child_aid);

 mbpState.connectChildBmp &= ~(1 << child_aid);

(void)OS_RestoreInterrupts(enabled);
 }
}

Children who receive MB_COMM_RESPONSE_REQUEST_KICK from a parent are d
parent. A callback function posts MB_COMM_PSTATE_KICKED to notify the parent
received the connection-denied response.

When the parent posts MB_COMM_RESPONSE_REQUEST_ACCEPT to a child, the c
where it can accept download delivery.

First, a callback function posts MB_COMM_PSTATE_REQ_ACCEPTED to notify the p
received the connection-accepted response. Then a callback function posts
MB_COMM_PSTATE_WAIT_TO_SEND to notify the parent that the child entered a s
download delivery. Data transfer to the child will not execute properly if it begins b
receives this notification.
1

EQUEST_ACCEPT))
2

NTR-06-0226-002-A3
eased: February 2, 2006

EQUEST_KICK))

isconnected from that
that the child

hild transits to a state

arent that the child

tate that accepts
efore the parent

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 32  2004-2005 Nintendo
Released: February 2, 2006

In the sample program, nothing happens when MB_COMM_PSTATE_KICKED and
MB_COMM_PSTATE_ACCEPTED are posted, but when MB_COMM_PSTATE_WAIT_TO_SEND is posted, the
information for managing child connections is updated and, depending on the state of the parent, download
delivery to that child begins. (For more details on the MBP_StartDownload function, see section 4.1.2.4.)

Code 4-13 Determine Child State, Begin Program Download

static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{

switch (status)
 {

//---
 // Post ACK to child for ACCEPT
 case MB_COMM_PSTATE_REQ_ACCEPTED:
 // No special process at this point.
 break;
 //---
 // Notification to child when kicked.
 case MB_COMM_PSTATE_KICKED:
 // No particular process is required.
 break;
 //---
 // Notification when download request received from child.
 case MB_COMM_PSTATE_WAIT_TO_SEND:
 {

// Child's state changes from entry to download-wait.
 // An interrupted process, so changed without
 // prohibiting interrupts.
 mbpState.requestChildBmp &= ~(1 << child_aid);
 mbpState.entryChildBmp |= 1 << child_aid;

// Calling MBP_StartDownload() from main routine starts data
 // transmission. If already in the data-transmission state,
 // data transfer also begins to that child.
 if (MBP_GetState() == MBP_STATE_DATASENDING)
 {

MBP_StartDownload(child_aid);
 }

}
break;

 }
}

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 33 NTR-06-0226-002-A3
Released: February 2, 2006

In the wait portion of the connection process (1), download delivery to a child can begin (4) if there is a
child in a state that can accept download delivery (3). Conversely, the Single-Card Play feature can be
cancelled (2).

Code 4-14 Begin Download Delivery or Cancel Single-Card Play

static BOOL ConnectMain(u16 tgid)
{
while (TRUE)
 {

switch (MBP_GetState())
 {

//---
 // Waiting for entry from child
 case MBP_STATE_ENTRY :

{
BgSetMessage(PLTT_WHITE, " Now Accepting ");

if (IS_PAD_TRIGGER(PAD_BUTTON_B))

 {
// B Button cancels Single-Card Play

 MBP_Cancel();
break;

 }

// Can start if there is at least one child in entry
 if (MBP_GetChildBmp(MBP_BMPTYPE_ENTRY)) ||
 MBP_GetChildBmp(MBP_BMPTYPE_DOWNLOADING) ||
 MBP_GetChildBmp(MBP_BMPTYPE_BOOTABLE))
 {

BgSetMessage(PLTT_WHITE, " Push START Button to start ");

if (IS_PAD_TRIGGER(PAD_BUTTON_START))
 {

// Start download
 MBP_StartDownloadAll();

}
}

}
break;

 }
}

}

4.1.2.4 Sending the Program to the Child

Once MB_COMM_PSTATE_WAIT_TO_SEND is posted, the parent can begin download delivery to the
child that posted the notification. Download delivery is started using either the
MB_CommStartSending or MB_CommStartSendingAll function. To use the
MB_CommStartSendingAll function, first check that all connected children can accept download
delivery. Calling the function once may not begin download delivery to all the children.

Because download delivery cannot begin for children that are not in the
MB_COMM_PSTATE_WAIT_TO_SEND state, be sure to start download delivery separately for each child
if a MB_COMM_PSTATE_WAIT_TO_SEND notification is received after the MB_CommStartSendingAll
function has executed.

1

2

3

4

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 34  2004-2005 Nintendo
Released: February 2, 2006

In the sample program, the MB_CommStartSending function is used inside the MBP_StartDownload
function and the connection state is updated for all children for which download delivery has started.

Code 4-15 Disable Interrupts, Begin Download

void MBP_StartDownload(u16 child_aid)
{

if (! MB_CommStartSending(child_aid))
 {

// If a request fails, disconnect that child.
 MBP_DisconnectChild(child_aid);
 return;
 }

{
OSIntrMode enabled = OS_DisableInterrupts();

mbpState.entryChildBmp &= ~(1 << child_aid);

 mbpState.downloadChildBmp |= 1 << child_aid;

(void)OS_RestoreInterrupts(enabled);
 }
}

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 35 NTR-06-0226-002-A3
Released: February 2, 2006

When using the MBP_StartDownloadAll function, after the connection request is accepted and the
parent enters the download-delivering state represented by MBP_STATE_DATASENDING (1), the
connect state of the children is checked and the MBP_StartDownload function begins download
delivery to those children that can accept the download (4). If the parent accepts a connection request
from a child, but the child is not in a state to accept delivery, the download begins later when the child
enters the receptive state (2). Children in other states are disconnected.

Code 4-16 Verify Child States, Begin Download

void MBP_StartDownloadAll(void)

{

u16 i;

// Entry acceptance completed
 MBP_ChangeState(MBP_STATE_DATASENDING);

for (i = 1; i < 16; i++)
 {

if (! (mbpState.connectChildBmp & (1 << i)))
 {

continue;
 }

if (mbpState.requestChildBmp & (1 << i))
{

// Perform this process when currently entered children are ready
 // and the MB_COMM_PSTATE_WAIT_TO_SEND notification is received.
 continue;
 }

// Disconnect children that are not entered
 if (! (mbpState.entryChildBmp & (1 << i)))

{
MBP_DisconnectChild(i);

 continue;
 }

// Start download for entered children
 MBP_StartDownload(i);

}
}

1

2

3

4

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 36  2004-2005 Nintendo
Released: February 2, 2006

Inside the MB_CommStartSending function, MB_COMM_RESPONSE_REQUEST_DOWNLOAD (start
delivery response) is posted to children. The child receives this post and confirms that download
delivery has started by posting MB_COMM_PSTATE_SEND_PROCEED in a callback function. When
download delivery to the child is complete, MB_COMM_PSTATE_SEND_COMPLETE is posted in a callback
function.

In the sample program, nothing happens when MB_COMM_PSTATE_SEND_PROCEED is posted, but
information for managing child connections is updated when MB_COMM_PSTATE_SEND_COMPLETE is
posted.

Code 4-17 Notify when Download Begins and Ends

static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{

switch (status)
 {

//---
 // Notify when binary transmission to child begins
 case MB_COMM_PSTATE_SEND_PROCEED:
 // None.
 break;
 //---
 // Notify when binary transmission to child ends
 case MB_COMM_PSTATE_SEND_COMPLETE:
 {

// An interrupted process, so changed without
 // prohibiting interrupts.
 mbpState.downloadChildBmp &= ~(1 << child_aid);
 mbpState.bootableChildBmp |= 1 << child_aid;
 }

break;
 }
}

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 37 NTR-06-0226-002-A3
Released: February 2, 2006

4.1.2.5 Restarting the Child

The child can be restarted once download delivery to the child is complete. The MB_CommIsBootable
function checks whether the child can be rebooted. In the sample program, the MBP_IsBootableAll
function checks whether all connected children are in a state that allows rebooting.

Code 4-18 Check Whether Children Are Bootable

BOOL MBP_IsBootableAll(void)
{

u16 i;

if (mbpState.connectChildBmp == 0)
 {

return FALSE;
 }

for (i = 1; i < 16; i++)
 {

if (! (mbpState.connectChildBmp & (1 << i)))
 {

continue;
 }

if (! MB_CommIsBootable(i))
 {

return FALSE;
 }

}
return TRUE;

}

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 38  2004-2005 Nintendo
Released: February 2, 2006

If download delivery is complete for all children, a reboot request is sent to the children.

Code 4-19 Reboot Children when Download Is Complete

static BOOL ConnectMain(u16 tgid)
{

--- Omitted ---

while (TRUE)
 {

//---
 // Process for sending program
 case MBP_STATE_DATASENDING :
 {

// Can start if all parties have finished downloading.
 if (MBP_IsBootableAll())
 {

// Start boot
 MBP_StartRebootAll();
 }

}
break;

--- Omitted ---

 }
}

}

The reboot request sent to children is made using either the MB_CommBootRequest or
MB_CommBootRequestAll function. If you use the MB_CommBootRequestAll function, first verify
that downloading to all connected children is complete. Calling the function once may not result in a
request for all children to reboot.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 39 NTR-06-0226-002-A3
Released: February 2, 2006

In the sample program, the child reboot request is made using the MBP_StartRebootAll function.
The connection state of all children is checked inside the MBP_StartRebootAll function and the
reboot request is made using the MB_CommBootRequest function. The state of the parent is then
changed to MBP_STATE_REBOOTING (wait for child reboot).

Code 4-20 Change Parent State, Continue Booting Children

void MBP_StartRebootAll(void)
{

u16 i;
 u16 sentChild = 0;

for (i = 1; i < 16; i++)
 {

if (! (mbpState.bootableChildBmp & (1 << i)))
 {

continue;
 }

if (! MB_CommBootRequest(i))
 {

// If a request fails, disconnect that child.
 MBP_DisconnectChild(i);
 continue;
 }

sentChild |= (1 << i);
 }

// Error: exit if connection child is 0
 if (sentChild == 0)
 {

MBP_ChangeState(MBP_STATE_ERROR);
 return;
 }

// Change state to child device restart wait state.
 MBP_ChangeState(MBP_STATE_REBOOTING);
}

The MB_COMM_RESPONSE_REQUEST_BOOT (reboot request) notification is sent to children from inside
the MB_CommBootRequest function. Each child receives the reboot request and posts
MB_COMM_PSTATE_BOOT_STARTABLE from inside a callback function when finished rebooting.

Because wireless communications between the parent and the child are disconnected when the child
is done rebooting, MB_COMM_PSTATE_DISCONNECTED is posted in a callback function.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 40  2004-2005 Nintendo
Released: February 2, 2006

In the sample program, if MB_COMM_PSTATE_BOOT_STARTABLE has been posted, the information for
managing the connections of children is updated and the Single-Card Play feature is ended using the
MB_End function after all children are done rebooting.

Code 4-21 Verify that Download Is Complete, Disconnect Children

static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{

switch (status)
 {

//---
 // Notification that child boot ended correctly
 case MB_COMM_PSTATE_BOOT_STARTABLE:
 {

// An interrupted process, so changed without
 // prohibiting interrupts.
 mbpState.bootableChildBmp &= ~(1 << child_aid);
 mbpState.rebootChildBmp |= 1 << child_aid;

// If all children are done booting, the parent
 // also enters the reconnection process.
 if (mbpState.connectChildBmp == mbpState.rebootChildBmp)
 {

MBP_Printf("call MB_End()\n");
 MB_End();
 }

}
break;

 //---
 // Notification when child is disconnected
 case MB_COMM_PSTATE_DISCONNECTED:
 {

// Delete entry if child disconnects in situation
 // other than rebooting.
 if (MBP_GetChildState(child_aid) != MBP_CHILDSTATE_REBOOT)
 {

MBP_DisconnectChildFromBmp(child_aid);
 }

}
break;

 }
}

If changes have been made to this code so that the MB_StartParentFromIdle function is used,
make the following changes to call the MB_EndToIdle function at the end instead of the MB_End
function.

 // If all children have finished booting, then the
 // parent also enters the reconnection process.
 if (mbpState.connectChildBmp == mbpState.rebootChildBmp)
 {

MBP_Printf("call MB_EndToIdle()\n");
 MB_EndToIdle();
 }

...

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 41 NTR-06-0226-002-A3
Released: February 2, 2006

When the Single-Card Play feature is ended by the MB_End function, the notification
MB_COMM_PSTATE_END is posted by a callback function. In the sample program, the parent is moved
to the process-end state (MBP_STATE_COMPLETE) and the work area in memory allocated for
download delivery is released.

Code 4-22 End Single-Card Play, Change Parent State, Clear Buffer

static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{

switch (status)
 {

//---
 // Notification at end of Single-Card Play
 case MB_COMM_PSTATE_END:
 {

if (MBP_GetState() == MBP_STATE_REBOOTING)
 // An end of reboot process, end MB and
 // reconnect with child.
 {

MBP_ChangeState(MBP_STATE_COMPLETE);
 }

else
 // Complete shutdown, return to STOP state
 {

MBP_ChangeState(MBP_STATE_STOP);
 }

// Release the buffer used for game delivery.
 // The work region is released when MB_COMM_PSTATE_END
 // comes in a callback, so OK to free.
 if (sFilebuf)
 {

OS_Free(sFilebuf);
 sFilebuf = NULL;
 }

if (sCWork)
 {

OS_Free(sCWork);
 sCWork = NULL;
 }

// The registration info is cleared at the same time MB_End is
 // called and work is freed, so MB_UnregisterFile can be omitted
 }

break;
 }
}

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 42
Released: February 2, 2006

In the final step, the code fragment for quitting the Single-Card Play feature (2) is referenced from the
rebooting process (1).

Code 4-23 End Reboot, Reconnect Wireless Communications

static BOOL ConnectMain(u16 tgid)
{

--- Omitted ---

while (TRUE)
 {

//---
 // Reboot process
 case MBP_STATE_REBOOTING:

{
BgSetMessage(PLTT_WHITE, " Rebooting now

 }
break;

//---

 // Reconnection process
 case MBP_STATE_COMPLETE :

{
// If all parties connect without trouble,

 // quit Single-Card Play process and restart
 // wireless communications as a normal parent.
 BgSetMessage(PLTT_WHITE, " Reconnecting now

SVC_WaitVBlankIntr();
 return TRUE;
 }

break;

--- Omitted ---
 }

}
}

4.1.3 Starting the Parent Application

In the multiboot-Model sample program, game software is downloaded to children
Card Play feature. After the child reboots the wireless-communications parent shar
program downloaded to the child. Because the wireless communication connection
when the Single-Card Play feature ends, the wireless connection with the child mu

1

2

 ");
 2004-2005 Nintendo

 ");

using the Single-
es data with the
 with the child is cut
st be reestablished.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 43 NTR-06-0226
Released: February

In the sample program, the connection information used by the Single-Card Play feature is used for data
sharing. The first step is to perform the initialization processes required for data sharing. The
GInitDataShare function makes the initial settings for the buffer to be used for data-sharing
communications. The WH_Initialize function initializes the WM library and wireless communications.

If changes have been made in the code in order to use the MB_StartParentFromIdle function, it
does not need to be called at this point because the IDLE state is being maintained and the
WH_Initialize function has already been called.

Code 4-24 Initialize Data Sharing, the WM Library, and Wireless Communications

 // Configure the buffer for data-sharing communications
 GInitDataShare();
 // If MB_StartParent & MB_End have been used, then initialize
 // wireless communications at this point
 (void)WH_Initialize();

Once wireless communications start, the parent may receive connection requests from devices other
than the children to which the program has been delivered using the Single-Card Play feature. To
handle this possibility, the WH_SetJudgeAcceptFunc function sets the function to be used in deciding
whether or not to allow the connection.

Code 4-25 Process Connection Requests

 // Configure the function for deciding connection to children
 WH_SetJudgeAcceptFunc(JudgeConnectableChild);

The JudgeConnectableChild function is used to make this determination in the code below. The
connection is permitted if the player number (aid) used during Single-Card Play can be obtained from
the MAC address of the terminal connected in step 1.

Code 4-26 Process Connection Request–Details

static BOOL JudgeConnectableChild(WMStartParentCallback* cb)
{

u16 playerNo;

/* Search for cb->aid child's multiboot-time aid from MAC address */
 playerNo = MBP_GetPlayerNo(cb->macAddress);

OS_TPrintf("MB child(%d) -> DS child(%d)\n", playerNo, cb->aid);

if (playerNo == 0)
 {

return FALSE;
 }

sChildInfo[playerNo] = MBP_GetChildInfo(playerNo);
 return TRUE;
}

Finally, wireless communications with this unit as the parent are started and data sharing begins

Because the state is WH_SYSSTATE_IDLE (1) when the WH_Initialize function ends, the
WH_ParentConnect function is used to start wireless communications. The arguments for the
function include WH_CONNECTMODE_DS_PARENT (used to indicate data-sharing) and the TGID
communication channel used by the Single-Card Play feature.
1

-002-A3
 2, 2006

.

and

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 44  2004-2005 Nintendo
Released: February 2, 2006

Once wireless communications begin, the state changes to WH_SYSSTATE_DATASHARING (2) and
data sharing begins.

Code 4-27 Change State and Share Data

 /* Main routine */
 for (gFrame = 0 ; TRUE ; gFrame++)
 {

SVC_WaitVBlankIntr();

ReadKey();

BgClear();

switch (WH_GetSystemState())
 {

case WH_SYSSTATE_IDLE :
/* ----------------

 * If you want the child to reconnect to the same parent
 * without rescanning, then tgid and channel must match.
 * In this demo, both the parent and the child use the same
 * channel as that at time of the multiboot, and tgid+1 compared
 * to the tgid at the time of multiboot. For this reason, the
 * child can reconnect without scanning.
 *

* If you are going to specify a MAC address and rescan,
 * the tgid and channel values do not need to be the same.
 * ---------------- */
 (void)WH_ParentConnect(WH_CONNECTMODE_DS_PARENT, tgid, sChannel);
 break;

case WH_SYSSTATE_CONNECTED:
 case WH_SYSSTATE_KEYSHARING:
 case WH_SYSSTATE_DATASHARING:

{
BgPutString(8 , 1 , 0x2 , "Parent mode");

 GStepDataShare(gFrame);
 GMain();
 }

break;
 }

}

1

2

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 45 NTR-06-0226-002-A3
Released: February 2, 2006

4.1.4 States of the Parent

The MBP_GetState function can obtain the following states of the parent:

Table 4-1 The Parent States

Values Returned by the
MBP_GetState Function

The State of the Parent

MBP_STATE_STOP The MB_End function was called from the MBP_Cancel function and the

Single-Card Play feature was stopped.

MBP_STATE_IDLE The MBP_Init function finished, the MBP_Start function was called, and

the device can begin operating as the parent.

MBP_STATE_ENTRY
The MBP_Start function finished and the parent is waiting for a connection

from a child. This is the only state in which the parent can accept a

connection from a child.

MBP_STATE_DATASENDING The MBP_StartDownloadAll function was called and download-delivery to

the connected children has begun.

MBP_STATE_REBOOTING The MBP_StartRebootAll function was called and connected children are

rebooting.

MBP_STATE_COMPLETE All connected children received reboot requests and the Single-Card Play

feature was ended by the MB_End function.

MBP_STATE_CANCEL The MBP_Cancel function was just called.

MBP_STATE_ERROR An error has occurred.

4.2 Single-Card Play Children
The user program for a Single-Card Play child starts after Single-Card Play data is transferred from the
parent device and the child is rebooted. During reboot, the connection with the parent device is
completely terminated.

In this section, the sample program multiboot-Model is used to describe how Single-Card Play children
are determined and how to obtain connection information used during Single-Card Play.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 46  2004-2005 Nintendo
Released: February 2, 2006

4.2.1 Single-Card Play Child Determination

The child uses the MB_IsMultiBootChild function to determine whether it was started using the
Single-Card Play feature.

Code 4-28 Check Whether Child Booted by Single-Card Play

 // Check to see if self is child that started from Single-Card Play.
 if (! MB_IsMultiBootChild())
 {

OS_Panic("not found Multiboot child flag!\n");
 }

4.2.2 Getting Connection Information During Single-Card Play

The connection information used during Single-Card Play can be obtained using the
MB_ReadMultiBootParentBssDesc function. If direct connection to the parent is to be made using
the WMBssDesc obtained, the key-sharing flag and other settings must be the same as set for the
parent at the time the information was obtained.

Code 4-29 Obtain Connection Information–Parent and Child Must Match

MB_ReadMultiBootParentBssDesc(&gMBParentBssDesc,
 WH_PARENT_MAX_SIZE, // Parent max transfer size
 WH_CHILD_MAX_SIZE, // Child max transfer size
 0, // Key sharing
 0); // Continuous transfer mode flag

4.2.3 Starting the Child Application

Data is shared with the parent as a wireless-communication child.

First, perform the initialization processes required for data sharing. These are the same as those
carried out for the parent: Use the GInitDataShare function to configure the initial settings of the
buffer to be used for data-sharing communications, and use the WH_Initialize function to initialize
the WM library and wireless communications.

Code 4-30 Initialize Data Sharing, the WM Library, and Wireless Communications

 GInitDataShare();

//********************************
 // Initialize wireless communications
 (void)WH_Initialize();
 //********************************

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 47
R

Next, try connecting to the parent with retries in the main loop (1). Once wireless communications
begin, the state moves to WH_SYSSTATE_DATASHARING (2) and data sharing begins.

Code 4-31 Connect Child to Parent, Change State, and Share Data

 // Main loop
 for (gFrame = 0 ; TRUE ; gFrame ++)
 {

// Divide process based on communication state
 switch(WH_GetSystemState())
 {

case WH_SYSSTATE_CONNECT_FAIL:
 {

// If WM_StartConnect() has failed, then the WM internal
 // state is illegal, so you need to reset WM to the IDLE
 // state using M_Reset.
 WH_Reset();
 }

break;
 case WH_SYSSTATE_IDLE:
 {

static retry = 0;
 enum {
 MAX_RETRY = 5
 };

if (retry < MAX_RETRY)
 {

ModeConnect();
retry++;

 break;
 }

// Display ERROR if cannot connect to parent in
 }

case WH_SYSSTATE_ERROR:
 ModeError();
 break;
 case WH_SYSSTATE_BUSY:
 case WH_SYSSTATE_SCANNING:
 ModeWorking();
 break;
 case WH_SYSSTATE_CONNECTED:
 case WH_SYSSTATE_KEYSHARING:
 case WH_SYSSTATE_DATASHARING:

{
BgPutString(8 , 1 , 0x2 , "Child mode");

 GStepDataShare(gFrame);
 GMain();
 }

break;
 }

}

The connection to the parent is made using the WH_ChildConnect function in
function. The arguments to this function include WH_CONNECTMODE_DS_CHILD
sharing) and gMBParentBssDesc (wireless communication connection inform
Single-Card Play feature).
1

MAX_RETRY
2

NTR-06-0226-002-A3
eleased: February 2, 2006

side the ModeConnect
 (used to indicate data
ation used by the

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 48  2004-2005 Nintendo
Released: February 2, 2006

When reconnecting after the download, if the application has some special information that needs to be
received from the parent, the parent will notify the child of that need via its game information beacon,
and the child can rescan to get that information. If this is not necessary, then you can perform the
reconnection by simply using gMBParentBssDesc. The ModeConnect function stores the codes for
both parent and child, telling them apart using the USE_DIRECT_CONNECT switch, so select whichever
one of these methods best suits the application at hand. (The default method is a simple reconnection.)

Code 4-32 Child Connection Details

static void ModeConnect(void)
{
#define USE_DIRECT_CONNECT

// If directly connecting to parent without scanning again.
#ifdef USE_DIRECT_CONNECT

//********************************
 (void)WH_ChildConnect(WH_CONNECTMODE_DS_CHILD, &gMBParentBssDesc, TRUE);
 // WH_ChildConnect(WH_CONNECTMODE_MP_CHILD, &gMBParentBssDesc, TRUE);
 // WH_ChildConnect(WH_CONNECTMODE_KS_CHILD, &gMBParentBssDesc, TRUE);
 //********************************
#else
 WH_SetGgid(gMBParentBssDesc.gameInfo.ggid);
 // If executing a rescan for the parent.
 //********************************
 (void)WH_ChildConnectAuto(WH_CONNECTMODE_DS_CHILD, gMBParentBssDesc.bssid,
 gMBParentBssDesc.channel);
 // WH_ChildConnect(WH_CONNECTMODE_MP_CHILD, &gMBParentBssDesc, TRUE);
 // WH_ChildConnect(WH_CONNECTMODE_KS_CHILD, &gMBParentBssDesc, TRUE);
 //********************************
#endif
}

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 49 NTR-06-0226-002-A3
Released: February 2, 2006

5 The cloneboot Sample Program
The cloneboot sample program uses the features described in 3 The Clone Boot Feature to act as a
Single-Card Play parent, delivering copies of its own programs to child devices and data sharing with
download children.

This cloneboot sample program shows the procedure for how to the unify the existing programs for
both the parent and child from the multiboot-Model sample program to create a program that supports
the clone boot feature. For details on the multiboot-Model sample, see 4 The Sample Program
(Multiboot-Model).

This chapter describes the following changes to the program structure:

1. Unification of the program source directories
2. Changes to the ROM specification file
3. Changes to makefile
4. Additions to the build procedure for attaching authentication codes

The chapter also describes the following changes made to the program source:

1. Changes to main entry names
2. Addition of new entries
3. Specification of a parent-only region
4. Revision of the binary registration process

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 50  2004-2005 Nintendo
Released: February 2, 2006

5.1 Changes to the Program Structure
The following sections describe the changes that must be made to a program in order for it to be able
to support the clone boot feature.

5.1.1 Unification of the Program Source Directories

In the multiboot-Model sample, the child program is first created and then the parent program is
created with that child program included as a separate file, so the overall structure is composed of two
separate build projects. Programs that support clone boot can be unified into a single project because
the parent is determined at the time of execution.

Here, the src and include directories, and all contents, included inside the parent, child, and
common directories are moved to the project's root directory. At this time, the main.c files that exist in
both the parent program and the child program get renamed to parent.c and child.c. (A new
main.c is created in a later procedure.)

Fig. 5-1 Unifying the source directories

5.1.2 Changes to the ROM Specification File

The child program included in the file system in the multiboot-Model sample is no longer present in the
program that supports clone boot, so delete the following lines from the main.rsf file:

Delete this specification
HostRoot $(MAKEROM_ROMROOT)
Root /
File $(MAKEROM_ROMFILES)

/common/include/common.h
 disp.h
 font.h
 gmain.h

/include/common.h
disp.h

 font.h
 gmain.h

/common/src/common.c
 disp.c
 font.c
 gmain.c

/parent/src/main.c

/child/src/main.c

/src/common.c
 disp.c
 font.c
 gmain.c

child.c

parent.c

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 51 NTR-06-0226-002-A3
Released: February 2, 2006

5.1.3 Changes to the Makefile

In order to unify the parent program and the child program and change them into a program that
supports the clone boot feature, a number of changes and additions must be made to the parent
program's makefile. These are described in the sections below. The makefile used in the build for the
child program is no longer necessary.

5.1.3.1 Correcting Directory and Source Specifications
Steps are taken so the changes to the directory structure that were made in 5.1.1 Unifying the Program
Source Directories are correctly reflected in makefile. Also, the main source for both parent and child
with changed filenames get added to the project.

The child program's build is no longer necessary, so delete the sub-build
specifications.
SUBDIRS = child
...

Specify references to the new, unified directory.
SRCDIR = ./src
INCDIR = ./include
...

Add the two main.c files with changed filenames (parent.c and child.c) to the
build source.
SRCS = main.c \
 common.c \
 disp.c \
 font.c \
 gmain.c

5.1.3.2 Specifying an LCF Template File for Clone Boot
To create a program that supports clone boot, you must secure a parent-only region, as described in
3.2.1 Placing Data in ROM. There is an LCF template file that has ROM placement configured for clone
boot. You need to explicitly specify this template:

$NitroSDK/include/nitro/specfiles/ARM9-TS-cloneboot-C.lcf.template

Specify the link configuration template for clone boot.
LCFILE_TEMPLATE = $(NITRO_SPECDIR)/ARM9-TS-cloneboot-C.lcf.template

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 52  2004-2005 Nintendo
Released: February 2, 2006

5.1.3.3 Additions to Build Procedure to Attach Authentication Code
Programs that support the clone boot feature have a procedure for getting the authentication code that
differs from the usual procedure for Single-Card Play programs described in 3.2.2 Authentication Code
Attachment.

For programs that support the clone boot feature, use the emuchild tool to create a binary for getting
the signature code. The procedure for doing this is as follows:

For retail-version applications, specify the distributed libsyscal.a and the
corresponding libsyscall_child.bin
LIBSYSCALL = ./ etc / libsyscall.a
LIBSYSCALL_CHILD = ./ etc / libsyscall_child.bin

Since already built, this is the procedure for creating the transfer-use
binary with the emuchild tool.
The created bin / sign.srl gets sent to the server that creates the
authentication code.
presign:
 $(EMUCHILD) \
 bin / $(NITRO_BUILDTYPE) / $(TARGET_BIN) \
 $(LIBSYSCALL_CHILD) \
 bin / sign.srl

The procedure for including the obtained authentication code in the binary is
the same as normal for clone boot.
Here, the binary main_with_sign.srl is created with the authentication code as
bin / sign.sgn.
postsign:
 $(ATTACHSIGN) \
 bin / $(NITRO_BUILDTYPE) / $(TARGET_BIN) \
 bin / sign.sgn \
 main_with_sign.srl

This notation is added for the sake of convenience of the task. If you enter the notation directly on the
command line, you do not need to add it to the makefile.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 53 NTR-06-0226-002-A3
Released: February 2, 2006

5.1.4 Changes to the Program Source

A number of corrections must be made to the program source in line with those changes to the overall
program structure made in the last section..

5.1.4.1 Change Main Entry Names
Since the original pair of main.c files (parent.c and child.c) both include the NitroMain
function, which is a main entry, their names must be changed appropriately.

child.c:

// Change name to be main entry for child.
// void NitroMain(void)
void ChildMain(void)
{

...

parent.c:

// Change name to be main entry for parent.
// void NitroMain(void)
void ParentMain(void)
{

...

Also, be sure to add the function prototype declarations to common.h using the changed names.

common.h
// Originally the parent's NitroMain function.
void ParentMain(void);
// Originally the child's NitroMain function.
void ChildMain(void);

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 54  2004-2005 Nintendo
Released: February 2, 2006

5.1.4.2 Add New Main Entries
Add a new NitroMain function for calling the parent main entry and child main entry whose names
have been changed. In programs that support the clone boot feature, the main.c file is created as
outlined below so that processes called for the parent and processes called for the child can be
separated based on the value returned by the MB_IsMultiBootChild function.

main.c

#include <nitro.h>
#include "common.h"

void NitroMain(void)
{

if(! MB_IsMultiBootChild())
 {

ParentMain();
 }

else
 {

ChildMain();
 }

/* The process does not reach this point */
}

In the example used here, the goal is to move from the multiboot-Model as easily as possible.
Processes that are the same for the parent and the child can be shared. However, you always need to
be careful that a card has not been plugged into the child device.

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 55 NTR-06-0226-002-A3
Released: February 2, 2006

5.1.4.3 Specify a Parent-Only Region

Part of the clone boot program code must be included in the parent-only ROM region, described in
section 3.2.1 Placing Data in ROM.

Since the parent-only part of the card is a secure region, like a ROM header, etc., it cannot be read
again from the parent after booting. For this reason, be careful not to reinitialize changeable data that
has been placed in this region (such as .bss section and .daya section data) when performing a
software reset using the OS_ResetSystem function.

When using the OS_ResetSystem function, only the following C language items can be used as data
in the parent-only region:

・ Constants.

・ Functions that do not have any internal static variables.

・ Global variables accompanied by an explicit dynamic initialization process. (In C++ , an
object accompanied by a constructor.)

In addition, content to be included in the parent-only region should not only be "essential to the parent"
but must also "not be used at all by the child."

There is no simple standard that can be applied at this point because the ability to judge these two
criteria depends on the overall design of the application regarding how one identifies the main version
of the software versus versions distributed for Single-Card Play. However, as a general rule, it is both
easy and effective to include state transitions to states where only the main part of the program can be
played in this parent-only region.

In the cloneboot sample, all functions that are included in parent.c are specified for placement in
the parent-only region. This region is specified using the NITRO-SDK include files parent_begin.h
and parent_end.h, as described below.

parent.c

...

//==
// Function definitions
//==

// The parent-only region .parent section definitions start from here.
// Only functions that do not include static variables exist below this point.
#include <nitro/parent_begin.h>
void ParentMain(void)
{
...

}
// The parent-only region .parent section definitions end here.
#include <nitro/parent_end.h>
// End of file.

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 56  2004-2005 Nintendo
Released: February 2, 2006

Here, parent.c includes all Single-Card Play parent processes. The conditions for placement in the
parent-only region are satisfied: the content is essential to the parent and never used by the child.

Two representative examples of the many types of content that should not be specified for the parent-
only region are given below for your reference.

Since changing code so these functions are not called invalidates them, there is no reason to place
functions which do not need to be called in the parent-only region from a security standpoint.

/* Function gets placed in parent-only region (for debug output only) */
void no_use(void)
{
OS_Printf("called!\n");

}
...
void NitroMain(void)
{
...

 /* If parent, this gets called. (No trouble if it is not called) */
 if(!MB_IsMultiBootChild()) no_use();
}

Next, one must absolutely avoid unintentionally placing a function that is used by both the parent and
the child in the parent-only region. Here, the distinction between the "main part of the program" and a
"delivered program" affects the quality of the game.

/* Function gets placed in parent-only region. (A screen presentation process
that the child is not expected to use) */
void draw_special_effect_1000(void)
{

... /* Screen presentation process */
}

/* Game process shared by parent and child */
void UpdateGameFrame(void)
{
/* Unexpectedly, function gets called by both parent and child under certain

conditions */
 if(score >= 1000) draw_special_effect_1000();
}

Single-Card Play User Guide NITRO-SDK

 2004-2005 Nintendo 57 NTR-06-0226-002-A3
Released: February 2, 2006

5.1.4.3 Correct the Binary Registration Process
The process that registers binaries for the Multiboot library also needs to be changed in order to allow
cloneboot. This procedure is describeed in section 3.2.3 Clone Boot Binary Registration.

parent.c
...
const MBGameRegistry mbGameList =
{

// If the MBP_Start function gives NULL for the path name, the process is
 // treated as a clone boot.
 // To read details about the function's internal processes, see
 // $NitroSDK/build/demos/wireless_shared/mbp/mbp.c.
 NULL,
 (u16*)L"DataShareDemo", // Game name
 (u16*)L"DataSharing demo(cloneboot)", // Description of game content
...
 }

NITRO-SDK Single-Card Play User Guide

NTR-06-0226-002-A3 58  2004-2005 Nintendo
Released: February 2, 2006

© 2004-2005 Nintendo

The contents of this document cannot be duplicated,

copied, reprinted, transferred, distributed or loaned in

whole or in part without the prior approval of Nintendo.

	1 Introduction
	1.1 Overview
	1.2 Single-Card Play Startup Procedure
	1.3 Attaching an Authentication Code
	1.4 Using the System Call Library and ROM Header
	1.5 Transferable Binary Code Size
	1.6 Accessing the Backup Regions in Game Cards and Game Paks

	2 Single-Card Play Operations
	2.1 Process Flow on the Parent Side
	2.1.1 Preparations by the Parent
	2.1.1.1 Selecting a Wireless Communication Channel
	2.1.1.2 Setting the Parent's Parameters
	2.1.1.3 Configuring the Maximum Number of Children
	2.1.1.4 Registering the Child Binary Information

	2.1.2 Sending Data and Starting Children

	2.2 Reconnecting with the Parent
	2.3 Other Precautions
	2.3.1 Applications with Multiple Communication Modes
	2.3.2 About the IRQ Stack
	2.3.3 About the Single-Card Play Child Device Program Overlay

	3 The Clone Boot Feature
	3.1 About Clone Boot
	3.2 Clone Boot Procedure
	3.2.1 Placing Data in ROM
	3.2.2 Authentication Code Attachment
	3.2.3 Clone Boot Binary Registration

	4 The Sample Program (Multiboot-Model)
	4.1 Single-Card Play Parent
	4.1.1 Preparing for the Single-Card Play Feature
	4.1.2 The Single-Card Play Feature
	4.1.2.1 Initializing the Parent
	4.1.2.2 `The Start of Operations by the Parent
	4.1.2.3 Waiting for a Connection from the Child
	4.1.2.4 Sending the Program to the Child
	4.1.2.5 Restarting the Child

	4.1.3 Starting the Parent Application
	4.1.4 States of the Parent

	4.2 Single-Card Play Children
	4.2.1 Single-Card Play Child Determination
	4.2.2 Getting Connection Information During Single-Card Play
	4.2.3 Starting the Child Application

	5 The cloneboot Sample Program
	5.1 Changes to the Program Structure
	5.1.1 Unification of the Program Source Directories
	5.1.2 Changes to the ROM Specification File
	5.1.3 Changes to the Makefile
	5.1.3.1 Correcting Directory and Source Specifications
	5.1.3.2 Specifying an LCF Template File for Clone Boot
	5.1.3.3 Additions to Build Procedure to Attach Authentication Code

	5.1.4 Changes to the Program Source
	5.1.4.1 Change Main Entry Names
	5.1.4.2 Add New Main Entries
	5.1.4.3 Specify a Parent-Only Region
	5.1.4.3 Correct the Binary Registration Process

