
NitroROM File System Specifications

 2003-2005 Nintendo 1 NTR-06-0037-002-A1
Released: February 2, 2006

NitroROM File System Specifications
NITRO-SDK

10/19/04
SPD Environment Design Group, Nintendo Co., Ltd.

0 Introduction

This document introduces a simple file system in the NitroSDK that functions as a method to shorten,
as much as possible, the time to update the data within ROM that frequently occurs during
development.

This document also describes how the program files and data files that are generated during the
application creation with Nitro are made into a ROM file.

You do not need to be concerned about this format from applications because ROM can be accessed
through a file system-related API.

There is also a possibility that changes may occur in the final product version concerning details such
as registration addresses of data that are mentioned in this document.

The changes made since 08/04/2004 are shown in red.

1 NitroROM Format

A Nitro ROM file consists of the following programs:

(a) ROM header Management data for the entire ROM

(b) Static module (MainP/SubP) Module that is read and executed at startup

(c) File name table Corresponding information between file names and file
numbers

(d) Overlay header table Corresponding information between overlay ID and file
numbers

(e) File allocation table Location information of each file within the ROM
(correspondence between file numbers and locations)

(f) File image File entity

(g) Banner Banner file. Stores icons and game names

NitroROM File System Specifications

 2003-2005 Nintendo 2 NTR-06-0037-002-A1
Released: February 2, 2006

f) File Images

MainProc Static Module

File #X XXX.wav

Nitro ROM Header
(16KB)

offset=0

SubProc Static Module

File #0 AAA.dat

File #1 BBB.ovl

File Allocation Table

File #2 CCC.mid

File Name Table

MainP Overlay Header

SubP Overlay Header

c) File Name Table

e) File Allocation
Table

b) Static Modules

a) ROM Header

Paddings

d) Overlay Header
Table

Bannerg) Banner

If the alignment between each block and the start addresses of sections within blocks is required,
padding will be inserted. The developer can specify unit length settings and whether or not to align for
each block.

In the illustration above, addresses are allocated in order of a) - e), g, f). This illustration, however, is
only for the purpose of easily understanding the organization. With the exception of a), block positions
will not be the same order. The ROM header is fixed at a top offset within the ROM. Other blocks are
linked from the ROM header by pointers (offset values from the top of the ROM) directly or indirectly.
Because of this, you can freely change the arrangement of blocks, except for the ROM header, by
changing the order of links. The following illustration is a conceptual link diagram. This is for reducing
the costs that are related to emulations of ROM images.

NitroROM File System Specifications

 2003-2005 Nintendo 3 NTR-06-0037-002-A1
Released: February 2, 2006

f) File Images

offset=0

c) File Name Table

e) File Allocation
Table

b) Static Modulesa) ROM Header

d) Overlay Header
Table

g) Banner

The C source is used to show the organization of each NitroROM block.

(a) ROM Header
typedef struct
{

//
 // 0x000 Reserved region for system use
 //
 u8 reserved_A[32]; // Reserved for system A (not explained in this text)
 //
 // 0x020 b) Parameter for static module
 //
 // ARM9
 void* main_rom_offset; // Source ROM offset
 void* main_entry_address; // Execution start address (not implemented)
 void* main_ram_address; // Destination RAM address
 u32 main_size; // Size
 // ARM7
 void* sub_rom_offset; // Source ROM offset
 void* sub_entry_address; // Execution start address (not implemented)
 void* sub_ram_address; // Destination RAM address
 u32 sub_size; // Size

NitroROM File System Specifications

 2003-2005 Nintendo 4 NTR-06-0037-002-A1
Released: February 2, 2006

//

 // 0x040 c) Parameter for file name table
 //
 ROM_FNTDir* fnt_offset; // Top ROM offset
 u32 fnt_size; // Table size
 //
 // 0x048 e) Parameter for file allocation table
 //
 ROM_FAT* fat_offset; // Top ROM offset
 u32 fat_size; // Table size
 //
 // 0x0050 d) Parameter for overlay header table
 //
 // ARM9
 ROM_OVT* main_ovt_offset; // Top ROM offset
 u32 main_ovt_size; // Table size

// ARM7
 ROM_OVT* sub_ovt_offset; // Top ROM offset
 u32 sub_ovt_size; // Table size
 //
 // 0x0060 - 0x0067 Reserved region for system use
 //
 u8 reserved_B1[8]; // Reserved for system B1 (not explained in this text)
 //
 // 0x0068 g) Banner file offset
 //
 u32 banner_offset; // Top ROM offset
 //
 // 0x006c - 0x006f Reserved for system
 //
 u8 reserved_B2[4]; // Reserved for system B2 (not explained in this text)
 //
 // 0x0070 Static module parameter 2 (for debugger)
 //
 void* main_autoload_done; // ARM9 AUTOLOAD complete CALLBACK
 void* sub_autoload_done; // ARM7 AUTOLOAD complete CALLBACK
 //
 // 0x0078 - 0x03fff Reserved for system

NitroROM File System Specifications

 2003-2005 Nintendo 5 NTR-06-0037-002-A1
Released: February 2, 2006

 //
u8 reserved_C[4*1024-0x78]; // Reserved for system C
u8 reserved_D[12*1024]; // Reserved for system D

} ROM_Header; // 16KB

(b) Static module (MainP/SubP)

This module is output as a binary file at the same time as elf files during link processing. This binary file
is inserted in ROM as is.

There are two processors: the main processor ARM9 and the sub processor ARM7. The top ROM
address of each processor must be aligned at 512 bytes.

(c) File name table

This table acquires file IDs from file names. It supports directories. The table consists of a directory
table and an entry name table.

The directory table has the following structure array.

A number referred to as a directory ID is assigned to each table. The directory ID is incremented in the
order of the stored data. To distinguish it from the directory ID, file IDs start from 0xF000. The
maximum value is 0xFFFF. From these specifications, the maximum number of directories is 4,096
and the maximum number of files is 61,440.

The number of elements in the array coincides with the number of directories; the subscript of the array
coincides with the value of 0xF000 subtracted from the directory ID.

Data that has a directory ID of 0xF000 represents a root directory. For a root directory, the number of
directory entries is stored in the members of the parent directory ID.
typedef struct
{

u32 entry_start; // Search location of entry name
 u16 entry_file_id; // File ID of top entry
 u16 parent_id; // ID of parent directory
} ROM_FNTDir;

entry_start (search location of entry name) is an offset value from the top location of a file name
table.

NitroROM File System Specifications

 2003-2005 Nintendo 6 NTR-06-0037-002-A1
Released: February 2, 2006

A file name table is a collection of the following two types of variable length data. Use the data
structures correctly depending on whether the entries are files or directories. Since there is a need for
processing these data structures in units of bytes, you must be careful of restrictions on byte access
when analyzing this data in main memory.
typedef struct
{

u8 entry_type :1; // 0 when file entry
 u8 entry_name_length:7; // Length of file name (0 - 127)
 char entry_name[length]; // File name (omit terminal \0)
} ROM_FNTStrFile;
typedef struct
{

u8 entry_type :1; // 1 when directory entry
 u8 entry_name_length:7; // Length of directory name (0 - 127)
 char entry_name[length]; // Directory name (omit terminal \0)
 u8 dir_id_L; // Directory ID Low 8-bit
 u8 dir_id_H; // Directory ID High 8-bit
} ROM_FNTStrDir;

Entries that are included in identical directories are arranged in successive regions. With the exception
of “files” that are subdirectories contained in the directories, “ files” are assigned successive file IDs.
File entries (“\0”) that have an entry name length of 0 are placed after the final entry within a directory.

Entry names have the following characteristics:

� A maximum of 127 characters (in terms of 1-byte character).

� Distinguish between uppercase and lowercase characters with the specification of file names in
order to speed up the search process.

� The registration of multiple entries with identical names within the same directory is prohibited.
Taking into consideration that work will be performed in Windows, uppercase and lowercase
characters are not distinguished when judging whether or not there are identical entry names being
registered.

� You can use characters for the entry names except for code that cannot be used with Windows
within the range of ASCII 0x20 – 0x7e (\ / : ; * ? " < > |). The internationalization of file
names is not supported because of support cost considerations.

The following illustration shows an example when the three following file names are stored in this
format.
 /Nitro.ROM
 /BQ.DAT
 /image/APPLE.JPG

NitroROM File System Specifications

 2003-2005 Nintendo 7 NTR-06-0037-002-A1
Released: February 2, 2006

TYPE FILE
LENGTH 8
NAME "IRIS.ROM"

Directory Table

TYPE FILE
LENGTH 6
NAME "BQ.DAT"

TYPE DIR
LENGTH 5
NAME "image"
DIR_ID 0xF001

TYPE FILE
LENGTH 9
NAME "APPLE.JPG"

TYPE FILE
LENGTH 0

TYPE FILE
LENGTH 0

ENTRY_START →
FILE_ID 0
NUM_DIRS 2
ENTRY_START →
FILE_ID 2
PARENT_DIR 0xF000

Entry Name Table

Top of File Name Table

(d) Overlay header table

This is a file that contains load information of overlay files. It is created as a binary file at the same time
with nef files and overlay modules during link processing.

When a linker outputs, the “overlay file ID” is set to a temporary value. The “overlay file ID” is then
rewritten with an actual value by the makerom command.

The following is an array of the structure data. The size of the array coincides with the number of
overlay files, and the subscript of the array coincides with the overlay ID.
typedef struct
{

u32 id; // Overlay ID
 void* ram_address; // Load top location
 u32 ram_size; // Load size
 u32 bss_size; // bss region size
 void* sinit_init; // static initializer initial address
 void* sinit_init_end; // static initializer end address
 u32 file_id; // Overlay file ID
 u32 reserved; // Reserved (0 is set)

u32 compressed:24; // Overlay size after compressed
u32 flag :8; // Overlay information flag

} ROM_OVT;

NitroROM File System Specifications

 2003-2005 Nintendo 8 NTR-06-0037-002-A1
Released: February 2, 2006

Note) Regarding the bit field of compressed and flag, address +0 is set to the area for flag, and address +1 to
+3 is set to the area for compressed.

To support the compression of overlay files, the overlay information flag was newly added. The OR values
with the following values are set according to the overlay state. This value is evaluated by the library when the
overlay is loaded.

Compressed 0x01
Authentication code included 0x02

09/17/04 flag region was moved. Compressed was added.
09/04/04 flag region was added.

03/29/04 The ROM_OVT overlay file size value has been scrapped. It is now reserved.

(e) File allocation table

A file allocation table has an array of the structure data shown below. A number, called a file ID, is
assigned to each table. The file ID is incremented in the order of storage from 0x0000. The maximum
value is 0xEFFF. The size of the array coincides with the number of files and the subscript of the array
that coincides with the file ID.
typedef struct
{

void* head; // Top ROM address of file
 void* tail; // Bottom ROM address of file
} ROM_FAT; // 0x08

In the specification of after 02/17/04, reservation of the 0 value for the upper 4 bits of ROM_FilePtr
was canceled.

When the file ID is specified at intervals, { 0, 0 } is used for the file allocation table region that
corresponds to an unused file ID.

(f) File image

Each file corresponds to each entry of the file allocation table. The file is placed in a region that is
specified by an address between the file top and the file bottom.

NitroROM File System Specifications

 2003-2005 Nintendo 9 NTR-06-0037-002-A1
Released: February 2, 2006

f) FileImages File #0
AAA.dat

File #1
CCC.dat

File #X
XXX.dat

:

a) RomHeader :
:

file_alloc_table_address
file_alloc_table_size

:
:

File #2
BBB.dat

}

e) File Allocation
Table

File #0: top
bottom

8 Byte / File File #1: top
bottom

:
File #X: top

bottom

offset=0

g) Banner File

The banner file stores the images and messages displayed on the selection screen immediately after
the game starts. The starting ROM address must be 512-byte aligned.

typedef struct
{

// Header
 u8 version; // The current version is 0x01
 u8 reserved_A;
 u16 crc16_v1; // CRC for checking
 u8 reserved_B[28];
} BannerHeader; // 32B
typedef struct

NitroROM File System Specifications

 2003-2005 Nintendo 10 NTR-06-0037-002-A1
Released: February 2, 2006

{
// Icon data H32xW32x16colors

 u8 image[32*32/2]; // 32 * 32 * 4bit = 512B
 u8 pltt[16*2]; // 16color * 16bit = 32B
 // Game name data Encoding:UTF16-LE(without BOM)
 u16 gameName[6][128]; // 6langs * 128chars = 1536B
} BannerFileV1; // 2080B
typedef struct
{

BannerHeader h;
 BannerFileV1 v1;
} BannerFile; // 2112B

09/29/04 The banner file format explanation was added.

2 NitroROM Creation Path

ROM files are generated in paths as shown below.

The application called makerom have important functions during ROM file creation. makerom performs
the following processes:

� Phase 1
� Determines the files to be placed within the ROM, determines the offset location of each file

within the f) File image block (previously described), and then outputs that information as a file.
� A complete form of “c) File name table” and a model of “a) ROM header” are created

simultaneously with the processes described in the first bullet.
� Adds more information to “d) Overlay header table” to make a complete form.

� Phase 2
� Generates “e) File Allocation Table” and “f) File Image Block” based on the information file that

is output in phase 1.
� Adds information to “a) ROM header” to make a complete form.
� Links all of a) to f) and makes this a ROM file.

NitroROM File System Specifications

 2003-2005 Nintendo 11 NTR-06-0037-002-A1
Released: February 2, 2006

main.elf main.sbin

LD: mwldarm

main_defs
.sbin

main_table
.sbin

CC: mwccarm

main.c

main.o

main
overlay

main.lsf

makelcf

main.lcf

Application on the
Main Processor

Procedure for the Command
Line Version

Specifies which object files
are included in each overlay
using the lsf file.

File group output with LD

The subprocessor outputs
in the same way.

Specify with GUI in CW IDE.

1.sbin

NitroROM File System Specifications

 2003-2005 Nintendo 12 NTR-06-0037-002-A1
Released: February 2, 2006

makerom uses the following setting files.

(a) NitroROM spec file extension .rsf

(b) NitroROM list file extension .nlf

Application File on the

makerom
phase 1

game.bin

game.
nlf

game.rsf

makerom
phase 2

main.elf (b)
main.sbin

(f)
data-1.dat

main_files
.sbin

(f)
sub_
overlay
1.sbin

(d)
main_table
.sbin

(d)
sub_table
.sbin

(b)
sub.sbin

sub.elf

sub_files
.sbin(f)

main
overlay
1.sbin

(a)
main_head
.sbin

(c)
main_table
.sbin

Application File on the
Main Processor

SubProcessor

Investigate &
Partial rewrite

Data File

Concatenate files and
create ROM image

NitroROM list file

Something like a
ROM blueprint

Read ROM definition file
and determine files to

place in ROM

NitroROM definition files
list files to be accessed

from NITRO

(for debug)

(for debug)

NitroROM File System Specifications

 2003-2005 Nintendo 13 NTR-06-0037-002-A1
Released: February 2, 2006

These files are described here.

(a) NitroROM spec file .rsf

This is an example of a definition file. For details on the format, see the makerom tool reference
manual.

Describe the binary file portion (.sbin) output by the linker to Arm9/Arm7 section and then adds the
files you want to add within the ROM file to the RomSpec section. Also, describe other information in
the Property section.

In the following example, a file with a .jpg extension within the data/graphics directory of a
development PC is added under the /data directory of the ROM file. Then, in the next region a file
with a .wav extension under data/ARM7/sound is added under the /sound directory.

#
NitroROM Spec File
#
Arm9
{

Static main.sbin
 OverlayDefs main_defs.sbin
 OverlayTable main_table.sbin
 Nef main.nef
}
Arm7
{

Static sub.sbin
 OverlayDefs sub_defs.sbin
 OverlayTable sub_table.sbin
 Nef sub.nef
}
Property
{

RomHeader main_head.sbin
 FileName main_files.sbin
 BannerFile bannerfile.sbin
}
RomSpec
{

Offset 0x00000000
 Segment ALL

NitroROM File System Specifications

 2003-2005 Nintendo 14 NTR-06-0037-002-A1
Released: February 2, 2006

 Align 512
 Padding 0xff

HostRoot data/graphics
 Root /data
 File *.jpg
 HostRoot data/ARM7/sound
 Root /sound
 File *.wav
}

(b) NitroROM list file .nlf

This is a CSV format file that includes an information set that is used to build ROM images. This file
determines the ambiguous parts of rsf files. An example is shown below.

#NLF --- NitroROM List File
V,1.1
T,"C:/NitroSDK/build/tests/file/file-1"
H,"rom_header.bin","rom_files.bin",15
9,"main.nef","main.bin","main_ovt.bin","main_ovn.bin","."
7,"sub.nef","sub.bin","sub_ovt.bin","sub_ovn.sbin","."
File Image Block
F,00000000,000201fc,00,001c,ffff, "ROMROOT/Nitro.ROM","/Nitro.ROM",3ffbf36e,512,0
P,000201fc,00000200,00
.....

Line feed code is \r\n.

Each line consists of a command that consists of one ASCII character as the first parameter, and
parameters after that command.

Commands are divided into two types; A header command that indicates overhead information and a
body command that specifies the actual contents of the ROM. A body command should not be
positioned in front of a header command.

Header Command
Version: [V]
 V,[version number of file]

This is the version number of the format of a ROM file. Changed to 1.1 because the information for
the relative path from the overlay binary top directory has been added to arm9files/arm7files.

NitroROM File System Specifications

 2003-2005 Nintendo 15 NTR-06-0037-002-A1
Released: February 2, 2006

Topdir: [T]
 T,[Top directory name]

This is a reference directory in the indirect path designation expression of a file. The current
directory is set when an NLF file is created. If the top directory is designated with a relative path,
the position of the top directory is interpreted using the directory where the NLF file is located as
reference.

Headers: [H]
 H,[ROM header file],[File name table file],[Number of files with file IDs]

Specify the file names of ROM header files and file name tables.

These files are created by makerom. The file names are enclosed by double quotes.

A value of 8 times the [Number of files with file IDs] becomes the size of the file
allocation table.

arm9files: [9]
 9,[nef file],[Static module bin file],
 [Overlay table file],

[Overlay name file],[relative path from overlay binary top directory]
Note: We have put this on separate lines to make it easier to see. However, it is actually one
line.

Specifies the file name of the application file that is used for the Main Processor.

Each file name is enclosed by double quotes.

You can obtain the access path to binaries in the overlay name table by connecting
[top directory] and [relative path from overlay binary top directory].

If the overlay table file is not needed, set "*" as a file name. At this time
* is also set to [relative path from overlay binary top directory].

arm7files: [7]
 7,[nef file],[Static module bin file],
 [Overlay table file],

[Overlay name file],[relative path from overlay binary top directory]
Note: We have put this on separate lines to make it easier to see. However, it is actually one
line.

Specifies the file name of the application file that is used for the Sub Processor.

Each file name is enclosed by double quotes.

If the overlay table file is not needed, set "*" as a file name. At this time
* is also set to [relative path from overlay binary top directory].

NitroROM File System Specifications

 2003-2005 Nintendo 16 NTR-06-0037-002-A1
Released: February 2, 2006

Body Command
File: [F]
 F,[Start offset],[End offset],[Padding code],
 [File ID],[ROM header offset],
 [File name in development machine],[ROM file name],[Time stamp of file],
 [Alignment value],[Movement prohibit flag 0: Move permitted 1: Prohibit]

Note: Line feeds are entered for clarity; the command should be on one line.

Adds files to file image blocks as ROM files.

ROM address space where target files are placed is the range of addresses shown below:

Start offset ≤ address < End offset

When a file is smaller than the specified address space and the range that is specified by the start
offset and end offset cannot be filled, the remaining region will be filled with padding code. In contrast,
when the file is larger than the address space, an error will occur.

Stores information that is related to the offset location of files within ROM in a file allocation table
according to the specified value of [File ID]. The storage location is a location that is [File ID] * 8 from
the top of the file allocation table. Refer to the description of the file allocation table in the preceding
section for details on the storage structure. In addition, the specified value need not be stored when it
is ffff.

In the same way, the file whose [ROM header offset] is not set to ffff stores offset information of files at
specified locations of the ROM header. The storage location is a location that is [ROM header offset] *
4 from the top of the ROM header. Refer to the description of the ROM header for details.

The [File name in development machine] shows the locations of files in a development PC.

The file allocation table is generated when executing makerom. Because of this, the file allocation table
does not exist as a file on the PC. A special file name, *FILEALLOC, is defined to specify the insertion
location of the file allocation table.

Except for ordinary files, file names are not set for data files that are related to file system building such
as an overlay table. An asterisk (*) is specified in the [ROM file name] field of files without names. This
measure is taken to simplify the analysis of command character strings using sscanf.

The [Time stamp of file] is a time_t type value (total number of seconds from 1970 UTC) of a C
library as well as the value of a member st_mtime of a stat structure that is acquired by the stat
function. This field is set to 0 for a file allocation table (*FILEALLOC).

Changing the values of the start offset / end offset is not allowed for files whose [Movement prohibit
flag] is set to a value of “1.”

NitroROM File System Specifications

 2003-2005 Nintendo 17 NTR-06-0037-002-A1
Released: February 2, 2006

When this flag is “0”, the offset can be changed. When changing the offset value, be sure to change
each offset using the numeric value units that are specified by the alignment value.

The format of each value is as follows: (sscanf notation)

Command %1c
Start offset %08x
End offset %08x
Padding code %02x
File ID %04x
ROM header offset %04x
File name in development machine \"%1024[^\"\n]\"
ROM file name \"%1024[^\"\n]\"
Time stamp of file %08x
Alignment value %d
Movement prohibit flag 0 or 1

Padding: [P]
 P,[Start offset],[End offset],[Padding code]

Adds padding to the ROM file image block.

The target ROM address space is the following range of addresses:

Start offset ≤ address < End offset

The range that is specified by the start offset and the end offset is filled with padding code.

[Other]
#comment: [#]
 # [Comment]

None. For comments. Comma-delimited is not necessary for this line.

#NLF
The starting four characters of the file are #NLF in consideration of use as a magic number for a
file.

3 Overlay process

In order to obtain the overlay parameter at the time of makerom execution, you must create an overlay
name file in the format below when linking.

This file saves startup parameters (16-byte) that are related to the resident module and the executable
binary filenames of each overlay generated during linking.

NitroROM File System Specifications

 2003-2005 Nintendo 18 NTR-06-0037-002-A1
Released: February 2, 2006

The overlay executable binary file names are packed in the order of overlay IDs as character strings
terminated with “\0”. For example, when file names are a.sbin, b.sbin, and c.sbin, the file name
data is saved in the following format:

 a.sbin\0b.sbin\0c.sbin\0

To obtain the file name of overlay with overlay ID of “N”, search for the Nth “\0” from the start of the file
name data, and get the character string that starts from the next character as the file name.

//
// OverlayDefs format
//
typedef struct ROM_ONTHeader
{

void* static_ram_address; // static module ram_address
 void* static_entry_address; // entry address
 u32 static_size; // size
 void* static_autoload_done, // static autoload done address (debug purpose)
} ROM_ONTHeader;
typedef struct ROM_ONT
{

ROM_ONTHeader header;
 char file_list[]; // Variable length STRING data
 // File names ending in a NULL character are
 // retained as many as numbers corresponding to the
 // overlay binary
} ROM_ONT;

© 2003-2005 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

	0 Introduction
	1 NitroROM Format
	2 NitroROM Creation Path
	3 Overlay process

