
 2005-2006 Nintendo NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

NITRO-DWC Programming Manual
Nintendo Wi-Fi Connection

Version 1.4.1

The contents in this document are highly
confidential and should be handled accordingly.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 2  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

Table of Contents

1 Introduction ...7

2 User Management Under NITRO-DWC ...8
2.1 Managing Wi-Fi User Information ...8

2.1.1 User ID and Player ID ...8
2.1.2 The Difference Between a User ID and Player ID...9
2.1.3 Player Information by Game: Login ID ..9
2.1.4 Information for Wi-Fi Authentication Saved by Games ...10

2.2 Friend Management Overview..11
2.2.1 Building Friend Relationships..11
2.2.2 Building Friendships Using DS Wireless Communication...12
2.2.3 Building Friendships Using Friend Registration Keys ...12
2.2.4 Friend Information Saved by Games ..13

2.3 Exception Handling ...13
2.3.1 Removing the Association Between a DS Unit and a DS Card ..13

3 Initializing Nitro DWC..15

4 Creating User Data ...17

5 Connection Process..19
5.1 Connecting to the Internet...19
5.2 Disconnecting from the Internet ..20
5.3 Connecting to the Wi-Fi Connection Server ...20

6 Creating Friend Rosters and Information..24
6.1 Exchanging Friend Information via DS Wireless Communication ..24
6.2 Exchanging Friend Registration Keys...25
6.3 Synchronizing Friend Rosters...27
6.4 Obtaining Friend Information Types..30
6.5 Obtaining Friend Status ..31

7 Matchmaking...34
7.1 Peer Matchmaking Without Specifying Friends ..34
7.2 Peer Matchmaking by Specifying Friends...35
7.3 Evaluating Candidate Players for Matchmaking...37
7.4 Server/Client Matchmaking...38
7.5 Increasing Matchmaking Speed..41
7.6 Names that Cannot be Used for Matchmaking Index Keys..42

8 Sending and Receiving Data ..43
8.1 Peer-to-Peer Data Exchange..43

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 4  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

8.2 Closing Connections... 46
8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch .. 46
8.4 Emulating Delays and Packet Loss.. 47
8.5 Amount of Data Sent and Received ... 48

9 HTTP Communication .. 50
9.1 Preparing to Use the GHTTP Library ... 50
9.2 Uploading Data... 50
9.3 Downloading Data .. 52
9.4 Closing the GHTTP Library .. 55

10 Communication Errors.. 56
10.1 Error Handling .. 56
10.2 List of Error Codes.. 58

11 Network Storage Support ... 59

Code
Code 3-1 DWC Initialization... 15
Code 4-1 Creating User Data .. 17
Code 4-2 Saving User Data... 18
Code 5-1 Connecting to the Internet ... 19
Code 5-2 Disconnecting from the Internet... 20
Code 5-3 Connecting to the Wi-Fi Connection Server .. 21
Code 6-1 Exchanging Friend Information Using DS Wireless Communication 24
Code 6-2 Exchanging Friend Registration Keys.. 26
Code 6-3 The Friend Roster Synchronization Process ... 28
Code 6-4 Obtaining Friend Information Types... 31
Code 6-5 Getting a Friend’s Status.. 32
Code 7-1 Peer Matchmaking Without Specifying Friends ... 34
Code 7-2 Peer Matchmaking by Specifying Friends ... 36
Code 7-3 Evaluating Candidate Players for Matchmaking.. 37
Code 7-4 Server/Client Matchmaking.. 39
Code 8-1 Setup for Data Exchange... 43
Code 8-2 Sending Data ... 45
Code 8-3 Emulating Delays and Packet Loss ... 48
Code 9-1 Initializing the GHTTP Library.. 50
Code 9-2 Uploading Data .. 51
Code 9-3 Downloading Data.. 53
Code 10-1 Error Handling Process.. 56
Code 11-1 Accessing the Storage Server.. 60

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 5 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

Tables
Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keys ..42
Table 8-1 Communication Data Breakdown...48

Figures
Figure 2-1 Save State of the User ID on the DS Unit and DS Card...8
Figure 2-2 Using Multiple DS Units and DS Cards ..8
Figure 2-3 How Data is Stored on the Internet...9
Figure 2-4 Configuration of a Login ID ...10
Figure 2-5 Comprehensive Diagram of Terminology for Wi-Fi Authentication ...11
Figure 2-6 Creating Friendships Using DS Wireless Communication ...12
Figure 2-7 Creating Friendships Using Friend Registration Keys..13

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 6  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

Revision History
Version Revision Date Description

1.4.1 08/09/2006 • Revised text within 8.3, Yardstick for Buffer Size Specified by
DWC_InitFriendsMatch and Table 8 2, Communication Data Breakdown.

1.4.0 06/19/2006 • Changed the conditions for displaying error codes.
1.3.0 06/06/2006 • Revised the section "Examples of When a Temporary Login ID May be Duplicated" in

2.1.3 Player Information by Game: Login ID.

• Changed the memory size to 230 kbytes from 200 kbytes in Chapter 3, Initializing
NITRO-DWC.

• Added 7.6 Names that Cannot be Used for Matchmaking Index Keys
• Miscellaneous changes (unified terminology, made corrections, etc.)

1.2.0 3/10/2006 • Added “2 User Management Under NITRO-DWC”

• Added “7.5 Increasing Matchmaking Speed”
• Added “8.4 Amount of Data Sent/Received”

• Miscellaneous changes (review of text, changes in terminology, etc.)

1.1.0 1/30/2006

• Updated “Code 5-3 Synchronizing Friend Rosters”
• Corrected error in “Code 5-4 Friend Information Types” (“stablished” -> “established”)

• Corrected error in “Code 6-3 Evaluating Candidate Players for Matchmaking”
(“anymatch” -> “anymatch test”)

• Changed data load function in “11 Accessing the Storage Server” to a newly added
function.

1.0.0 12/28/2005 Initial version.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 7 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

1 Introduction
The NITRO-DWC library (DWC library) is designed with the goal of making the Nintendo Wi-Fi
Connection "easy to use, free of worries, and free of charge.” Specific benefits include:

� Making it easy to connect by sheltering users from complicated and detailed Internet settings.
� Making it easy to communicate with friends with whom friendships were established by using

wireless communications or by exchanging friend registration keys when not connected to the
Internet.

� Making it easy to remain secure by ensuring that one user cannot easily access another user’s
Internet-related information when a DS changes hands.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 8  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

2 User Management Under NITRO-DWC

2.1 Managing Wi-Fi User Information
Information required for Nintendo Wi-Fi Connection authentication (Wi-Fi authentication) includes a
User ID, Player ID, and password. This information is managed while treating the DS unit and DS
card as a pair. (Figure 2-1)

Figure 2-1 Save State of the User ID on the DS and DS Card

【DS 本

体】

ユーザーID

【DS カー

ド】

ユーザーID

� The User ID and password used for Wi-Fi authentication are saved on the DS unit.
� The User ID and Player ID used for Wi-Fi authentication are saved on the DS card.

This information is used by the Nintendo Wi-Fi Connection for authentication. If the User ID saved on
the DS card differs from the User ID saved on the DS unit, data saved on the Nintendo Wi-Fi
Connection cannot be accessed. This prevents the unauthorized access of data. (Figure 2-2)

Figure 2-2 Using Multiple Nintendo DS systems and DS Cards

2.1.1 User ID and Player ID

The User ID is generated offline and is designed to be as unique as possible. After it is generated, it
becomes the User ID for connecting to the Internet, authenticating, and registering with the system. If
the ID is found to already be in use during authentication, a new, unique User ID will be assigned.

To ensure that the User ID is unique, part of the DS Unit’s MAC address is used. Although this

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 9 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

prevents the same User ID from being used on different DS units, duplication might occur when a
User ID is moved1 or regenerated.

The Player ID is a random 32-bit ID. Because data on the Internet server is managed using the
combined User ID, Player ID, and Initial Code, a Player ID only needs to be unique with respect to the
User ID and Initial Code. If the Player ID is duplicated, a unique Player ID will be assigned during
authentication.

2.1.2 The Difference Between a User ID and Player ID

Because a User ID is issued to each DS, a user that uses the same DS must use a single User ID for
all games. Since Player IDs are issued to DS Cards, you can use different Player IDs when using the
same DS (User ID) and the same Game Code (Figure 2-3).

Figure 2-3 How Data is Stored on the Internet

2.1.3 Player Information by Game: Login ID

The combined User ID + Player ID + Initial Code are called the “Login ID” (Figure 2-4). User
information saved on the Internet server is called a “Profile,” while the ID used to manage profiles on
the server is called a “Profile ID.”

1 User Information stored on the DS can be moved using the “Nintendo Wi-Fi Connection Setup” feature provided by
DWC.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 10  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

Figure 2-4 Configuration of a Login ID

Inside the DWC library, the Login ID or Profile ID is used to search for the profiles of other users on
the Internet server.

The Login ID is generated when not connected to the Internet and becomes a temporary Login ID.
Although a user is likely to use this Login ID as is, it might not be available. In this case, a unique,
approved Login ID (authenticated Login ID) is generated. There is a one-to-one correspondence
between authenticated Login IDs and assigned Profile IDs.

A temporary Login ID may be duplicated under the following circumstances:

� The Login ID is created with a User ID that was not authenticated, the same User ID already is
registered in the Authentication server by another person, and the Login ID was created with the
same player ID for the same game.

� Multiple DS systems created Login IDs with the same player ID for the same game using the
same unauthenticated User ID.

2.1.4 Information for Wi-Fi Authentication Saved by Games

Games must save this information for Wi-Fi authentication as backup on the DS Card.

The size of the information used for authentication is 64 bytes.

The Wi-Fi authentication information includes the temporary Login ID, the authenticated Login ID, and
the Profile ID. Developers do not need to fully understand the details because this information is
created and updated by the DWC library.

Information for Wi-Fi authentication must also be saved for each player when multiple players can
use the same DS Card.

Figure 2-5 shows the Wi-Fi authentication terminology covered so far.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 11 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

Figure 2-5 Comprehensive Diagram of Terminology for Wi-Fi Authentication

2.2 Friend Management Overview

2.2.1 Building Friend Relationships

To be able to easily start communication with friends using DWC, friend relationships are built by an
Internet server. Friendships are built by exchanging user information. Established friendships are
saved in the profile of each user.

There are two methods of exchanging the user information used to create a friendship.

� Using DS Wireless Communication
Using this method, the players exchange Login or Profile IDs. The Login ID is used if the player
in question has never logged in before. Even though each of these was created locally, it is
highly likely that they are unique but not guaranteed. However, because the probability of
duplication is less than 2-75, no special countermeasure against duplication is required. The
Profile ID is used for players who have logged in at least once before. This creates friendships
with certainty, because a particular party can always be specifically identified.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 12  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

� Exchanging Friend Registration Keys
Using this method, the players exchange friend registration keys included in the Profile ID as
information used for error checking. A player must have connected to the Internet at least once
to use a Profile ID. You must create an interface that allows input to be confirmed and re-entered
in case it is incorrectly input.

The information exchanged can be created using DWC. DWC includes functions for automatically
creating the most applicable information possible based on information used for Wi-Fi authentication
saved on the DS Card.

2.2.2 Building Friendships Using DS Wireless Communications

A mechanism is provided that allows friendships to automatically be established later on the Internet
when information is exchanged with another party during DS Wireless Communications. The
information exchanged is created from the Login ID or Profile ID included in user data.

Note: The exchange of this information via DS Wireless Communications is not supported by DWC..
Be sure that applications handle the exchange of created information.

Figure 2-6 Creating Friendships Using DS Wireless Communications

2.2.3 Building Friendships Using Friend Registration Keys

The term “Friend Registration Key” refers to information that can be used to specifically identify
another user when establishing a friendship. A mechanism is provided that allows friendships to be
created by exchanging this friend registration key (see Figure 2-7). Because the friend registration
key is manually entered by users, it should not be unnecessarily long. It is created using the Profile ID
obtained by connecting at least once to the Internet rather than using the Login ID.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 13 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

Figure 2-7 Creating Friendships Using Friend Registration Keys

The friend registration key is a 12-digit number.

Pay attention to the following points when developing games.

� You must create a user interface for issuing friend registration keys. Since a key cannot be
issued unless a player connects to the Internet at least once, a message to this effect must be
displayed.

� You must create a user interface for entering the friend registration key. The user interface must
allow the user to correct an incorrectly input friend registration key. It should also allow users to
save and edit the entered data as many times as necessary.

2.2.4 Friend Information Saved by Games

Games must save exchanged friend information for the maximum number of players to be managed
as friends in a backup area. This is required so users can edit friendships when they are not
connected to the Internet. Friend-related information used by the actual game (such as nicknames,
win-loss record, etc.) must also be saved. DWC treats all of this as friend information without regard
to the type of data (Login ID, Profile ID, and friend registration key).

To store friend information used by DWC, 12 bytes per player are required.

2.3 Exception Handling

2.3.1 Removing the Association Between a DSt and a DS Card

For security reasons, Nintendo Wi-Fi Connection treats the DS and DS Card as a set. This can be
inconvenient for a user if the DS is resold or broken as the ability to connect to Nintendo Wi-Fi
Connection is lost.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 14  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

To solve this problem, there is a DWC mechanism that allows the user to delete the data that associates
a DS Card with a given DS by destroying information stored in the profile. Because this deletes all
Internet friendships, you must create an interface to warn the user before deleting the data.

Even if Internet friendships are deleted, friend information for other parties remains on the DS Card of
the deleted user. This allows friendships to be restored by using this information and sending a new
friend registration key to the other party. Since it is necessary in these cases to prompt to the user to
register the deleted user as a friend again, each application needs to include a message for notifying
the user of the required procedure.

With regard to specific processing, the currently saved association on the DS Card is deleted. If a
user wants to create a new association, it must be handled by creating new user data and destroying
the previous user data. Furthermore, even if user data is updated, friendships on the friend roster
saved on the DS Card remain established. If a specification where the friend roster remains intact is
used, be sure to clear the friendship established flag included in the friend information when letting
the user know that friendships remain established.

Note: Refer to the flow diagram in the Nintendo Wi-Fi Connection Programming Guidelines.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 15 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

3 Initializing Nitro DWC
Before calling any of its library functions, you must initialize the DWC library as shown in Code 3-1
using the DWC_Init function that performs the following processes:

� Generates information for user authentication stored in the DS
� Checks if the connection target information stored in the DS’s backup memory is valid

Also use the DWC_SetMemFunc function to configure the Internet and Nintendo Wi-Fi Connection and
the functions that allocate and free internal memory used for matchmaking and friend relationship
processing. (These topics are covered in Chapter 4, Creating User Data, and subsequent chapters.)

For four player matchmaking, the DWC library requires approximately 230 kilobytes of memory.
Removing one player from the maximum matchmaking number reduces the required memory by
approximately 20 kilobytes. (This is true for when the sendBufSize and recvBufSize arguments
of the DWC_InitFriendsMatch function are both set to the default value of 8 kilobytes.)

Code 3-1 DWC Initialization

void init_dwc(void)
{

u8 work[DWC_INIT_WORK_SIZE] ATTRIBUTE_ALIGN(32);
// Initialize the DWC library

if (DWC_Init(work) == DWC_INIT_RESULT_DESTROY_OTHER_SETTING)
disp_init_warning_msg(); // Display warning message

// Set functions for allocating and freeing memory
DWC_SetMemFunc(AllocFunc, FreeFunc);
:

}
// Function for allocating memory
void* AllocFunc(DWCAllocType name, u32 size, int align)
{

void * ptr;
OSIntrMode old;
(void)name;
(void)align;
old = OS_DisableInterrupts();
ptr = OS_AllocFromMain(size);
OS_RestoreInterrupts(old);
return ptr;

}

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 16  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

// Function for freeing memory
void FreeFunc(DWCAllocType name, void* ptr, u32 size)
{

OSIntrMode old;
(void)name;
(void)size;
if (!ptr) return;
old = OS_DisableInterrupts();
OS_FreeToMain(ptr);
OS_RestoreInterrupts(old);

}

To read more about user authentication and other related topics, see the Nintendo Wi-Fi Connection
Guidelines.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 17 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

4 Creating User Data
The DWC library performs typical processes based on user data:

� Authenticating users
� Creating friend relationships

Even when the DS is not connected to the Internet, it requires user data to create the friend
information that is exchanged to create friend relationships via wireless communication.

If user data is not yet created or the user data is damaged, create the user data with the
DWC_CreateUserData function and store the user data in the DS Card backup memory.

Be sure the application allocates memory for saving the DWCUserData structure. User data for
several people is required when a single DS Card supports multiple players.

If player data is already created, be sure to check its validity using the DWC_CheckUserData
function after loading it from backup into memory (Code 4-1).

Code 4-1 Creating User Data

BOOL create_userdata(void)
{

// If there is backup data and user data in that backup data, load all and
// return TRUE.
if (DTUDs_CheckBackup())
{

(void)DTUD_LoadBackup(0, &s_PlayerInfo, sizeof(DTUDPlayerInfo));

OS_TPrintf("Load From Backup\n");

if (DWC_CheckUserData(&s_PlayerInfo.userData))
{

DWC_ReportUserData(&s_PlayerInfo.userData);
return TRUE;

}
}

// If valid user data has not been saved
OS_TPrintf("no Backup UserData\n");

// Create user data
DWC_CreateUserData(&s_PlayerInfo.userData, DTUD_INITIAL_CODE);

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 18  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

OS_TPrintf("Create UserData.\n");
DWC_ReportUserData(&s_PlayerInfo.userData);

return FALSE;
}

The DWC_CheckDirtyFlag function can be used to check whether it is necessary to save user data
to the DS Card. Always use the DWC_ClearDirtyFlag function to clear DirtyFlag before saving
the user data to backup memory as shown in Code 4-2.

Code 4-2 Saving User Data

void check_and_save_userdata(void)
{

if (DWC_CheckDirtyFlag(&s_PlayerInfo.userData))
{

DWC_ClearDirtyFlag(&s_PlayerInfo.userData);
DTUD_SaveBackup(0, &s_PlayerInfo.userData, sizeof(DWCUserData));

}
}

Before connecting to the Internet, be sure to check user data according to the following procedure:

� Connect to the Internet and get the user profile using the DWC_CheckHasProfile function. If
the profile cannot be obtained, user data is updated and the DS and DS Card are treated as a
set.

� Check whether the DS and DS Card are being used correctly using the
DWC_CheckValidConsole function. It is impossible to connect to the Internet if the DS and DS
Card are not correct because authentication will fail.

Note: Be sure to check flow charts included in
NINTENDO_Wi-Fi_Connection_Programming_Guidelines.pdf.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 19 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

5 Connection Process
The DWC library performs a two-phase process when connecting to the Internet:

� Connects to the Internet (making a Wi-Fi connection to get an IP address)
� Connects to the Nintendo Wi-Fi Connection server (referred to as "server")

When a DS connects to the Internet for the first time, the Nintendo Authentication server issues a
user ID for that DS. This user ID is stored in the DS backup memory.

After this initial connection is established, the DWC library stores this user ID and the player ID in the
previously created user data to generate a profile. The GS profile ID that corresponds to this
generated profile is stored in the user data.

5.1 Connecting to the Internet
When the DS first connects to the Internet to obtain the IP address, Nintendo's authentication server
issues a user ID to that DS. Tests are also performed to confirm that the DS can connect to the
connection test server using TCP communication and that the Internet connection is functioning
normally.

All these processes are performed automatically by calling the DWC_*Inet functions as shown in
Code 5-1.

Code 5-1 Connecting to the Internet

static DWCInetControl s_ConnCtrl; // Retain until the Internet connection is
disconnected
BOOL connect_to_inet(void)
{

// Initialization process for Internet connection
DWC_InitInet(&s_ConnCtrl);

// Start establishing connection
DWC_SetAuthServer(DWC_CONNECTINET_AUTH_RELEASE);
DWC_ConnectInetAsync();

// The connection process
while (!DWC_CheckInet())
{

DWC_ProcessInet();

// V-Blank wait process

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 20  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

// During the connection process you need to pass the
// process time to threads that have lower priority than
// the main thread. Use the OS_WaitIrq function for this.
GameWaitVBlankIntr();

}

// Confirm the connection result
if (DWC_GetInetStatus() != DWC_CONNECTINET_STATE_CONNECTED)
{

handle_error();
return FALSE;

}
// Connected
:

}

5.2 Disconnecting from the Internet
Call the DWC_CleanupInet* functions as shown in Code 5-2 to disconnect the DS from the Internet.

Even if a communication error occurs and the DS is disconnected automatically, you must call this
function because the library memory needs to be freed.

Code 5-2 Disconnecting from the Internet

void disconnect_func(void)
{

while (!DWC_CleanupInetAsync())
{

GameWaitVBlankIntr();
}
:

}

5.3 Connecting to the Nintendo Wi-Fi Connection Server
To connect to the Nintendo Wi-Fi Connection server, use the DWC_InitFriendsMatch function
shown in Code 5-3 to initialize matchmaking and friend relationship features.

The arguments to this function are:

� Pointers to the control objects of these features

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 21 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

� User data
� Product ID
� Game name and secret key provided by GameSpyS
� Send and receive buffer sizes used for communication between Nintendo DS systems
� Friend roster
� Maximum number of friends in the friend roster

The specified control objects are used in the DWC library until the DWC_ShutdownFriendsMatch
function is called.

Chapter 8 talks about the sizes of the Send and Receiver buffers in detail. When 0 is specified, as is
the case in the sample program below, the buffers use 8 kbytes by default.

The friend roster is an array of friend information in the DWCFriendData structure. Chapter 6,
Creating Friend Rosters and Information, discusses friend rosters and friend information in detail.

Next, call the DWC_LoginAsync function to make the connection to the server (see Code 5-3).

The first argument of this function is the player’s screen name. If players use names in your game
application, you must specify the screen name in this argument. The screen name used in the game
is sent to the authentication server to confirm and check for inappropriate names.

You can check the results of this function by calling the DWC_GetIngamesnCheckResult function
(see Code 5-3).

The second argument of the DWC_LoginAsync function is not currently used. Pass NULL for this
argument. The remaining arguments represent the callback to use after login completes and the
parameters of the callback.

After calling this function, call the DWC_ProcessFriendsMatch function repeatedly to advance the
login process, approximately once per game frame.

Next, the DWC_ProcessFriendsMatch function executes all matchmaking and friend-related
processing until the DWC_ShutdownFriendsMatch function is called. After login completes, be sure
to call DWC_ProcessFriendsMatch function to make sure that network processes (for example,
updating the friend roster) do not start while the DS is connected to another client.

Code 5-3 Connecting to the Nintendo Wi-Fi Connection Server

static BOOL s_logined = FALSE;
static DWCFriendsMatchControl s_FMCtrl;

void connect_to_wifi_connection(void)
{

DWC_InitFriendsMatch(&s_FMCtrl, DTUD_GetUserData(),

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 22  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

GAME_PRODUCTID, GAME_NAME, GAME_SECRET_KEY,
0, 0,
DTUD_GetFriendList(), FRIEND_LIST_LEN);

// Login using function for authentication
s_logined = FALSE;
if (!DWC_LoginAsync(L”name”, NULL, cb_login, NULL))
{

// Connection process fails to start.
return;

}

// Polling to see if connected
while (!s_logined)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error occurs
handle_error();
return;

}

GameWaitVBlankIntr();
}

// Connection process completed
if (DWC_GetIngamesnCheckResult() == DWC_INGAMESN_INVALID)
{

// Special process performed when inappropriate in-game screenname was detected
disp_ingamesn_warning();

}
:

}

// Callback when logged in
void cb_login(void)
{

if (error == DWC_ERROR_NONE)
{

check_and_save_userdata();

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 23 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

s_logined = TRUE;
}

}

The DWC_ShutdownFriendsMatch function ends the matchmaking and friend relationship features
and frees the memory reserved internally by the library.

When the DS connects to the server for the first time using the user data specified by the
DWC_InitFriendsMatch function, the DS and the DS Card are treated as a pair. When they are
treated as a pair, the DS Card that stores the specified user data cannot be used with another DS to
connect.

Furthermore, the user data is always updated when the first connection is made. Once the login
completes, the application should call a login callback and the DWC_CheckDirtyFlag function to
check the updated user data. If necessary, save the updated data to the DS Card.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 24  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

6 Creating Friend Rosters and Information
The DWC library has two procedures for establishing friend relationships among players:

� Exchanging friend information using DS Wireless Communications
� Exchanging friend registration keys

6.1 Exchanging Friend Information via DS Wireless Communications
During DS Wireless Communications, the DWC_CreateExchangeToken function is used to create
friend information based on the local user data for exchange with other players (shown in Code 6-1).

Friend information that the DS receives should be saved in the friend roster using the application.

Code 6-1 Exchanging Friend Information Using DS Wireless Communications

DWCUserData s_userData;
DWCFriendData s_friendList[FRIEND_LIST_LEN];

// Exchange friend information
void exchange_friend_data(void)
{

int i, j;

DWCFriendData ownFriendData;
DWCFriendData recvFriendList[FRIEND_LIST_LEN];

// Create friend information from local user data to send
DWC_CreateExchangeToken(s_userData, &s_friendData);

// Send & receive friend information via MP communication
MP_start((u16 *)&s_friendData, (u16 *)recvFriendList);
:

// Save the received friend information in an open slot
// in the friend roster.
// Do not save if the same friend information already exists.
for (i = 0; i < num_recv_data; ++i)
{

int index;
for (j = 0, index = -1; j < FRIEND_LIST_LEN; ++j)
{

if (DWC_IsValidFriendData(&s_friendList[j]))

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 25 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

{
/* If the friend roster has valid data, check if it is the same as

the received friend information and do not save if it is the
same. */

if (DWC_IsEqualFriendData(&recvFriendList[i],
&s_friendList[j]))

break;
}
else
{

// Records an available friend roster index
if (index == -1) index = j;

}
}

// Save valid friend information that does not overlap in friend roster
if (j >= FRIEND_LIST_LEN && index >= 0)
{

s_friendList[index] = recvFriendList[i];
}

}
:

}

6.2 Exchanging Friend Registration Keys
A player that has connected at least once to Nintendo Wi-Fi Connection is assigned a GS profile ID
that is saved in the user data. Any player that has a GS profile ID can create a friend registration key
that adds special error checking information to the GS profile ID. This friend registration key is a 12-
digit decimal number that players can exchange. Once this friend registration key has been entered,
friend data can be exchanged.

After the friend registration key is entered, the DWC_CreateFriendKeyToken function is called to
convert the key into friend information and save the friend information to the friend roster. (See Code
6-2.)

Use the DWC_CheckFriendKey function to check if the entered friend registration key is valid as
shown in Code 6-2. Even if this function is called, the error does not correct itself, so prepare a user
interface so that the user can enter the key until the key information is correct.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 26  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

Code 6-2 Exchanging Friend Registration Keys

// Display Friend Registration Key
void disp_friend_key(void)
{

u64 friend_key;

// Create friend registration key from local user data
if ((friend_key = DWC_CreateFriendKey(&s_userData)) != 0)
{

// Display friend registration key
disp_message("FRIEND CODE : %lld", friend_key);

}
else
{

// Display message that there is no friend registration key
disp_message("FRIEND CODE : not available");

}
:

}

/* Create friend information from friend registration key and register in
friend roster */

BOOL register_friend_key(void)
{

u64 friend_key;
DWCFriendData friendData;

while (1)
{

char friend_key_string[13];

// Get user to manually enter friend registration key
input_friend_key(friend_key_string);

/* Convert entered friend registration key string into u64 numerical
value */

friend_key = charToU64(friend_key_string);

// Check that friend registration key is correct and proceed if OK.
// If there is a problem, display message and have it entered again
if (DWC_CheckFriendKey(s_userData, friend_key)) break;

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 27 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

else disp_warning_message();
}

// Create Friend information from correct Friend Registration Key
DWC_CreateFriendKeyToken(&friendData, friend_key);

{
int index;
/* Using same method as MP communication, search for open slot and

overlaps in friend roster and register friend information. */
:
s_friendList[index] = friendData;
:

}
}

6.3 Synchronizing Friend Rosters
For a friend roster stored in the application (local friend roster) to be valid on the Internet, you need to
call the DWC_UpdateServersAsync function and update the friend roster stored on the GameSpy
server (server friend roster) as shown in Code 6-3.

To synchronize the friend rosters, you must first complete the login process with the
DWC_LoginAsync function.

Specify the following function arguments: the player name (the old specification — specify NULL); the
callback and its parameters when the friend roster completes synchronization; the callback and its
parameters for a change notification in friend status (discussed later); and the callback and its
parameters when the friend roster is deleted.

The friend roster synchronization process involves two main tasks: sending requests to establish
friend relationships for friends that are on the local but not the server friend roster and deleting friends
that are on the server but not the local friend roster.

If a request to establish a friend relationship is sent while the other party is offline, call the
DWC_LoginAsync function to save the request on the server and immediately deliver the request the
next time the contacted partner logs in. The friend relationship is only established after the information
is saved in the local friend roster of the other party.

Note that this process only registers the other party as your friend. When the other party receives the
request to establish a friend relationship, the contacted partner follows the same process to register
the initiating partner as a friend.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 28  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

After the friend roster synchronization process completes, the callback is called after the local and
server friend rosters are checked, needed requests to establish friend relationships are sent, and
unneeded friend information is deleted. Be aware that even if the callback has returned, this state
does not indicate that all friend relationships are established. If the isChanged argument of the
callback is set to TRUE, this indicates that the friend information in the local friend roster is updated
and needs to be saved. If a friend relationship is established at a time other than during the friend
roster synchronization process, the callback for an established friend relationship specified by the
DWC_SetBuddyFriendCallback function is called.

If multiple sets of friend information for the same friend are discovered during the friend roster
synchronization process, all but one set are automatically deleted. A callback is called for each
deleted set by comparing the friend roster index of the deleted friend information and the friend roster
index of the matching friend.

Code 6-3 The Friend Roster Synchronization Process

BOOL s_update = FALSE;
BOOL s_updateFriendList= FALSE;

void sync_friend_list(void)
{

// Set the callback for establishment of friend relationship
DWC_SetBuddyFriendCallback(cb_buddyFriend, NULL);

// Synchronize local Friend roster and server Friend roster
if (!DWC_UpdateServersAsync(NULL,

cb_updateServers, NULL,
NULL, NULL,
cb_deleteFriend, NULL))

{
// Synchronization process fails to start
return;

}

while (!s_update)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation
handle_error();
return;

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 29 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

}

GameWaitVBlankIntr();
}
:

while (1)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation
handle_error();
return;

}

// To update the friend list asynchronously, perform the following
// processing when appropriate and collect the updated local friend list
// and save.
if (s_updateFriendList)
{

// Save the friend list if it has been updated
s_updateFriendList = FALSE;
save_friendList();

}

game_loop();

GameWaitVBlankIntr();
}
:

}

// Callback for when Friend roster synchronization has completed
void cb_updateServers(DWCError error, BOOL isChanged, void* param)
{

if (error == DWC_ERROR_NONE)
{

// Friend roster synchronization successful
s_update = TRUE;

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 30  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

// Must be saved if Friend roster has been changed
if (isChanged) s_updateFriendList = TRUE;

}
}

// Callback for when there is a Friend roster deletion
void cb_deleteFriend(int deletedIndex, int srcIndex, void* param)
{

OS_TPrintf("friend[%d] was deleted (equal friend[%d]).\n",
deletedIndex, srcIndex);

s_updateFriendList = TRUE;
}

// Callback for when friend relationship has been established
void cb_buddyFriend(int index, void* param)
{

OS_TPrintf("Got friendship with friend[%d].\n", index);
s_updateFriendList= TRUE;

}

6.4 Obtaining Friend Information Types
Code 6-4 shows how you can obtain the data type set in the friend information using the
DWC_GetFriendDataType function.

The possible data types are:

� DWC_FRIENDDATA_NODATA No stored Friend information
� DWC_FRIENDDATA_LOGIN_ID ID for the state when a connection to Nintendo Wi-Fi

Connection has never been made
� DWC_FRIENDDATA_FRIEND_KEY Friend Registration Key
� DWC_FRIENDDATA_GS_PROFILE_ID GS Profile ID

When the contacted partner has not yet obtained a GS profile ID, the data type
DWC_FRIENDDATA_LOGIN_ID indicates that friend information was downloaded via DS Wireless
Communications.

Once the contacted partner has obtained a GS profile ID and initiating partner has completed the
friend roster synchronization process, the data type changes to DWC_FRIENDDATA_GS_PROFILE_ID.

The data type DWC_FRIENDDATA_FRIEND_KEY indicates that the friend relationship is not yet
established for the GS profile ID registered using the friend registration key. Once the friend
relationship is established, the data type changes to DWC_FRIENDDATA_GS_PROFILE_ID.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 31 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

You can use the DWC_IsBuddyFriendData function to determine whether a friend relationship has
been established from the friend information.

Code 6-4 Obtaining Friend Information Types

void disp_friendList(void)
{

int i;

for (i = 0; i < FRIEND_LIST_LEN; ++i)
{

// Get the friend information type
int type = DWC_GetFriendDataType(&s_friendList[i]);
OS_TPrintf("friend[%d] type %d.\n", type);

if (type == DWC_FRIENDDATA_GS_PROFILE_ID)
{

// Show friend relationship if GS profile ID
if (DWC_IsBuddyFriendData(&s_friendList[i]))
{

OS_TPrintf("Friendship is established.\n");
}
else
{

OS_TPrintf("Friendship is not yet established.\n");
}

}
}
:

}

6.5 Obtaining Friend Status
All players maintain their own status when using Nintendo Wi-Fi Connection. Nintendo Wi-Fi
Connection is managed by a server operated by GameSpy.

There are two player states that the application can reference:

� The communication state
� A status string or binary data

The communication state is defined by the DWC_STATUS_* constants, which are set automatically by
the DWC library.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 32  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

The application sets the status string with the DWC_SetOwnStatusString function and the binary
data with the DWC_SetOwnStatusData function as shown in Code 6-5.

Status strings must terminate with NULL and can be up to 256 text characters long, including the
NULL terminator. Binary data are converted inside the function into a string, and the approximate
number of text characters will be data size x 1.5. The string should not include '/' or '\\' because these
text characters are used by the library as identifiers.

The current status of a friend can be obtained if a friend relationship has been established. Specify a
friend status change callback as the argument in the DWC_UpdateServersAsync function to enable
a user to receive notices whenever friend status changes.

To obtain friend status, use the DWC_GetFriendStatus* function group. For this group of functions,
communication doesn’t occur while accessing the friend status list maintained by the DWC library.
However, processing of these functions takes several hundred microseconds, so take care when
calling the functions frequently over a short period of time.

Furthermore, if there is a sudden loss of power during communication, the player's status will remain
in the previous state for a few minutes.

Code 6-5 Getting a Friend’s Status

void sync_friend_list(void)
{

int i;

// Synchronize local friend roster and server friend roster
if (!DWC_UpdateServersAsync(NULL,

cb_updateServers, NULL,
cb_friendStatus, NULL,
NULL, NULL))

{
// Synchronization process fails to start
return;

}
:

// Friend roster synchronization completed
:

// Set lcoal status test string
DWC_SetOwnStatusString("location=city,level=1");
:

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 33 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

for (i = 0; i < FRIEND_LIST_LEN; ++i)
{

if (DWC_IsValidFriendData(&friendList[i])
{

u8 status;
char* statusString;

// If friend information is valid, get the status of that friend
status = DWC_GetFriendStatus(&friendList[i], statusString);

// Display the status of friend
disp_friend_status(status, statusString);

}
}
:

}

// Callback notifying change in friend's status
void cb_friendStatus(int index, u8 status, const char* statusString, void*
param)
{

OS_TPrintf("Friend[%d] status -> %d (statusString : %s).\n",
index, status, statusString);

}

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 34  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

7 Matchmaking
The DWC library provides two methods of matchmaking: peer matchmaking and server/client
matchmaking.

In peer matchmaking, the Nintendo DS systems are not distinguished as servers and clients. There
are two implementation methods:

� Not specifying friends
� Specifying friends

7.1 Peer Matchmaking Without Specifying Friends
This method performs matchmaking for players in the general public.

Call the DWC_ConnectToAnybodyAsync function to begin peer matchmaking without specifying
friends. The function's arguments are: the desired number of connected players including the local
player; a filter string for matchmaking conditions; a matchmaking completion callback and its
parameters when matchmaking completes; and a player evaluation callback and its parameters. (This
last callback is explained later.)

Use the filter string to narrow the search for matchmaking candidates. The matchmaking index keys
(in Code 7-1, the key names are str_key and int_key) need to be registered in advance using
the DWC_AddMatchKey* function. The key names are saved inside the library, but only pointers to
the key values are stored in the library. Consequently, you should retain key values until matchmaking
completes.

Note: There are certain names that cannot be used as Matchmaking index keys. For details, see
Chapter 7.6, Names that Cannot be Used for Matchmaking Index Keys.

Code 7-1 Peer Matchmaking Without Specifying Friends

static BOOL s_matched = FALSE;
static BOOL s_canceled = FALSE;
static const char* s_str_key = "anymatch_test";
static const int s_int_key = 10;

void do_anybody_match(void)
{

// Set the matchmaking index keys
DWC_AddMatchKeyString(0, "str_key", s_str_key);

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 35 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

DWC_AddMatchKeyInt(0, "int_key", s_int_key);

// Start matchmaking without specifying friends
DWC_ConnectToAnybodyAsync(4,

"str_key = 'anymatch_test' and int_key = 10",
cb_anymatch, NULL,
NULL, NULL);

// Poll to see if matchmaking has completed
while (!s_matched)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation
handle_error();
return;

}

GameWaitVBlankIntr();
}

// Matchmaking has completed
:

}

// Callback for when matchmaking has completed
void cb_anymatch(DWCError error, BOOL cancel, void* param)
{

if (error == DWC_ERROR_NONE)
{

if (cancel) s_canceled = TRUE;
else s_matched = TRUE;

}
}

7.2 Peer Matchmaking by Specifying Friends
This method performs matchmaking for friends registered in friend rosters.

Use the DWC_ConnectToFriendsAsync function to begin peer matchmaking by specifying friends,

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 36  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

as shown in Code 7-2 . The function's arguments are: the friend roster index array (the index list) of
friends to perform matchmaking; the number of elements in the index list; the desired number of
connected players including the host player; whether to allow matchmaking with friends from friend
rosters of other friends; a matchmaking completion callback and its parameters; and a player
evaluation callback and its parameters. (This callback is explained later.)

If NULL is specified for the index list, all friends in a friend roster are treated as matchmaking
candidates.

Peer matchmaking by specifying friends uses the DWC_InitFriendsMatch function to specify the
friend roster.

Furthermore, because each player has a different friend roster and there is a high probability that a
different index list is specified, the success rate of matchmaking drops dramatically when you disallow
matchmaking with friends of friends

Code 7-2 Peer Matchmaking by Specifying Friends

static BOOL s_matched = FALSE;
static BOOL s_canceled = FALSE;

void do_friend_match(void)
{

// Start matchmaking with specifying friends
DWC_ConnectToFriendsAsync(NULL, 0, 4, TRUE,

cb_friendmatch, NULL,
NULL, NULL);

// Poll to see if matchmaking has completed
while (!s_matched)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation
handle_error();
return;

}

GameWaitVBlankIntr();
}

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 37 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

// Matchmaking has completed
:

}

// Callback for when matchmaking has completed
void cb_friendmatch(DWCError error, BOOL cancel, void* param)
{

if (error == DWC_ERROR_NONE)
{

if (cancel) s_canceled = TRUE;
else s_matched = TRUE;

}
}

7.3 Evaluating Candidate Players for Matchmaking
During peer matchmaking, players who have been identified as matchmaking candidates can be
evaluated using game-specific criteria listed in order of preference.

When an evaluation callback is set as an argument of the function that starts peer matchmaking, that
callback is called every time a player is identified as a possible matchmaking candidate during
matchmaking. Use the DWC_GetMatch*Value function inside this callback to reference the
matchmaking index keys that were registered by the DWC_AddMatchKey* function as shown in Code
7-3. Evaluate each player based on these values and use the evaluated value as the return value.
Players whose evaluated value is less than zero are removed as matchmaking candidates.

Note that this method is designed to make selecting players with the highest evaluated values easier,
but this method does not guarantee that players with the highest evaluated values will be selected for
matchmaking.

Code 7-3 Evaluating Candidate Players for Matchmaking

static const char* s_str_key = "anymatch_test";
static const int s_int_key = 10;

void do_anybody_match(void)
{

// Set matchmaking index keys
DWC_AddMatchKeyString(0, "str_key", s_str_key);
DWC_AddMatchKeyInt(0, "int_key", s_int_key);

// Start matchmaking by specifying friends
DWC_ConnectToAnybodyAsync(4,

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 38  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

"str_key = 'anymatch_test'",
cb_anymatch, NULL,
cb_eval, NULL);

:
}

// Player evaluation callback
int cb_eval(int index, void* param)
{

int eval_int;

// Get the value for the matchmaking index key int_key
eval_int = DWC_GetMatchIntValue(index, "int_key", -1);

if (eval_int >= 0)
{

// Sees which are close to local value and takes it as evaluated value
return MATH_ABS(s_int_key - eval_int) + 1;

}
else
{

// Does not match make players that do not have the int_key key
return 0;

}
}

7.4 Server/Client Matchmaking
In server/client matchmaking among friends, the Nintendo DS systems take on clearly defined roles
as servers and clients. Server/client matchmaking is the same as peer matchmaking to the extent that
the completed network is a mesh network.

The server DS specifies the number of players allowed to connect (this number includes the server
DS), a matchmaking completion callback and its parameters, and a notify newly connected clients
callback and its parameters. The server DS calls the DWC_SetupGameServer function and then
waits for the client Nintendo DS systems to connect. The code for this process is shown in Code 7-4.

The client Nintendo DS systems specify an index list of friends allowed to connect, a matchmaking
completion callback and its parameters, and a notify newly connected clients callback and its
parameters. The client DS calls the DWC_ConnectToGameServerAsync function. With this function
configuration, the client Nintendo DS systems will try to connect if matchmaking has started with the
friend established as the server DS.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 39 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

When server/client matchmaking completes, the server DS has a friend relationship with every
connected client DS. However, the client Nintendo DS systems may have friend relationships through
their friends via their connection to the server DS.

The matchmaking completion callback is called when the client DS successfully connects to the
server DS, and also when a new client DS is added to the mesh network to which it belongs. The
newly connected client notification callback is called when a new client DS starts the connection to
the mesh network to which it belongs.

Code 7-4 Server/Client Matchmaking

static BOOL s_matched = FALSE;

void do_server_match(void)
{

// Start matchmaking as server DS
DWC_SetupGameServer(4,

cb_sc_match, (void *)CB_CONNECT_SERVER,
cb_sc_new, NULL);

while (1)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation.
handle_error();
return;

}

if (s_matched)
{

// If connection has been made with new client
init_new_connection();
s_matched = FALSE;

}

GameWaitVBlankIntr();
}
:

}

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 40  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

void do_client_match(void)
{

// Start matchmaking as client DS
DWC_ConnectToGameServerAsync(0,

cb_sc_match, (void *)CB_CONNECT_CLIENT,
cb_sc_new, NULL);

// Poll to see if matchmaking completed
while (!s_matched)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation.
handle_error();
return;

}

GameWaitVBlankIntr();
}

// Matchmaking completed
:

}

// Callback for when matchmaking completed
void cb_sc_match(DWCError error, BOOL cancel, BOOL self, BOOL isServer, int
index, void* param)
{

if (error == DWC_ERROR_NONE)
{

if (!cancel)
{

// Connection successful
s_matched = TRUE;

}
else if (self || isServer)
{

// If local system cancels matchmaking, or if the local system is a
// client DS and the server DS has cancelled matchmaking
s_canceld = TRUE;

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 41 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

}
/* Do nothing even if some other newly connecting client cancels

matchmaking */
}

}

// Callback to notify a newly connected client
void cb_sc_new(int index, void* param)
{

OS_TPrintf("Newcomer : friend[%d].\n", index);
}

Because server/client matchmaking creates a mesh network similar to peer matchmaking, the client
Nintendo DS systems can continue to communicate even after the server DS disconnects. However,
because server/client matchmaking cannot continue to function without a server DS, it is
recommended that you implement a way to disconnect all Nintendo DS systems when the server DS
disconnects. The server DS can also filter client connection requests by calling the
DWC_StopSCMatchingAsync function during matchmaking.

7.5 Increasing Matchmaking Speed
During peer matchmaking without specifying friends, you can increase the speed of matchmaking
using filters when getting a list of matchmaking candidates from the matchmaking server. (See Code
7-1). The matchmaking candidate list stored on the matching server has various conditions attached.

Matchmaking is more likely to fail when this list is obtained unconditionally and matchmaking
candidates are filtered inside the evaluation callback. This also takes more time by repeatedly re-
obtaining the list and performing matchmaking. You can reduce matchmaking failures and increase
matchmaking speed using a filter function to form the obtained matchmaking candidate list into a list
of acceptable matchmaking candidates.

Conversely, matchmaking efficiency can drop and time may be lost if excessive filtering is performed
inside the evaluation callback in situations where the number of candidates is likely to be low (such as
seeking players of the same skill level or in the same geographical region).

Consider the following when seeking to increase the matchmaking speed.

� Use a filter function to form a list of available candidates from the obtained matchmaking
candidate list.

� Adopt a specification where matches are made aggressively without too much filtering inside the
evaluation callback.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 42  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

7.6 Names that Cannot be Used for Matchmaking Index Keys
There are certain key names that cannot be registered as Matchmaking Index Keys by the
DWC_AddMatchKey* function because the key names are used by the library and the server. Do not
use any of the names listed in Table 7-1.

Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keys

country region hostname gamename gamever hostport
mapname gametype gamevariant numplayers numteams maxplayers
gamemode teamplay fraglimit teamfraglimit timeelapsed timelimit
roundtime roundelapsed password groupid player_ score_
skill_ ping_ team_ deaths_ pid_ team_t
score_t dwc_pid dwc_mtype dwc_mresv dwc_mver Dwc_eval

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 43 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

8 Sending and Receiving Data

8.1 Peer-to-Peer Data Exchange
Once matchmaking completes and the Nintendo DS system connections are established (that is, a mesh
network is formed), you must set up for data exchange before the Nintendo DS systems can communicate.

First, set up a receive buffer so each DS can receive data from other Nintendo DS systems. Call the
DWC_SetRecvBuffer function. For the aid argument, specify the AID that serves as the ID number
of each DS. The AID accepts values between 0 and N, where N is one less than the number of
Nintendo DS systems in the network.. Therefore, if matchmaking four players completes, the four
Nintendo DS systems are assigned the AID numbers 0, 1, 2, and 3. If the DS system assigned AID =
1 leaves the network, the remaining systems maintain the assigned AID numbers 0, 2, and 3. Any
data that arrives before setting up the receive buffer is deleted.

Next, configure the send and receive callbacks using the DWC_SetUserSendCallback() and
DWC_SetUserRecvCallback functions. Call the receive callback when a DS receives data from
another DS. Call the send callback immediately after transmission of specified data completes.

In this context, note that "transmission completes" means that the data has been passed to the lower
layer transmission function; it does not indicate that the partner DS has received the data.

To configure the connection close callback, call the DWC_SetConnectionClosedCallback
function when the local or partner DS leaves the network by the procedure to officially disconnect
(shown in Code 8-1).

These settings are not cleared until the DWC_ShutdownFriendsMatch function is called.; Hence, it
is not always necessary to set them immediately after matchmaking completes.

Code 8-1 Setup for Data Exchange

static u8 s_RecvBuffer[3][SIZE_RECV_BUFFER];

void prepare_communication(void)
{

u8* pAidList;
int num = DWC_GetAIDList(&pAidList);
int i, j;

for (i = 0, j = 0; i < num; ++i)
{

if (pAidList[i] == DWC_GetMyAID())

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 44  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

{
j++;
continue;

}

// Set the receive buffer for AIDs other than local AID
DWC_SetRecvBuffer(pAidList[i], &s_RecvBuffer[i-j], SIZE_RECV_BUFFER);

}

// Set the send callback
DWC_SetUserSendCallback(cb_send);

// Set the receive callback
DWC_SetUserRecvCallback(cb_recv);

// Set the connection close callback
DWC_SetConnectionClosedCallback(cb_closed, NULL);

}

// Callback for sent data
void cb_send(int size, u8 aid)
{

OS_TPrintf("to aid = %d size = %d\n", aid, size);
}

// Callback for received data
void cb_recv(u8 aid, u8* buffer, int size)
{

OS_TPrintf("from aid = %d size = %d buffer[0] = %X\n",
aid, size, buffer[0]);

}

// Connection close callback
void cb_closed(DWCError error, BOOL isLocal, BOOL isServer, u8 aid, int
index, void* param)
{

if (error == DWC_ERROR_NONE)
{

if (isLocal)
{

OS_TPrintf("Closed connection to aid %d (friendListIndex = %d).\n",
aid, index);

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 45 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

}
else
{

OS_TPrintf("Connection to aid %d (friendListIndex = %d)
//was closed.\n", aid, index);

}
}

}

There are two kinds of data transmission: reliable transmission and unreliable transmission. Both use
UDP communication, but, just like TCP communication, reliable transmission does not experience
packet loss and maintains packet order. However, the tradeoff is that reliable transmission takes
longer to complete because every sent packet is checked upon receipt.

Because unreliable transmission uses UDP communication, problems with packet loss and packet
order can occur. However, transmission is very fast because no packets are checked or resent.

If data transmission occurs at a layer lower than the DWC library, the data accumulates in the send
buffer that has a size specified by the DWC_InitFriendsMatch function. If the send buffer does not
have enough free space when reliable transmissions are attempted, any unsent data are retained as-
is; they are sent from inside the DWC_ProcessFriendsMatch function as soon as space is freed in
the send buffer.

Note that the default maximum amount of data that can be sent at once is 1465 bytes. If you try to
send more than this maximum amount of data, the data is divided up and the send is suspended. You
can change the maximum size of the send buffer using the DWC_SetSendSplitMax function.
However, because communication devices with various settings need to be accommodated, do not
set a maximum size larger than the default maximum.

Do not delete the send buffer if data for transmission is retained and suspended in this way. Also be
aware that the next data set cannot be sent while data is retained and suspended.

Use the DWC_IsSendableReliable function to check if space is available in the send buffer, the
send target AID is valid, and reliable transmission is possible (See Code 8-2.)

If you attempt to send more than the maximum amount of data using unreliable transmission, the
transmission will fail and FALSE will be returned.

Code 8-2 Sending Data

static u8 s_SendBuffer[SIZE_SEND_BUFFER];

void send_data(void)
{

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 46  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

// Send data using unreliable transmission to all connected DS systems.
// Ignore local AID if passed.
DWC_SendUnreliableBitmap(DWC_GetAIDBitmap(),

s_SendBuffer, SIZE_SEND_BUFFER);
:

// Check whether reliable transmission is possible for DS with AID=0
if (!DWC_IsSendableReliable(0)) return;

// Send data using reliable transmission to a specific DS
DWC_SendReliableBitmap(0, s_SendBuffer, SIZE_SEND_BUFFER);
:

}

8.2 Closing Connections
Call the DWC_CloseAllConnectionsHard function to close the connection with all Nintendo DS
systems in the mesh network. When the close process is executed, the connection close callback set
by DWC_SetConnectionClosedCallback() is called before exiting this function. The close
notification also notifies other Nintendo DS systems that were connected and the connection close
callback is called.

The server DS in server/client matchmaking calls this DWC_CloseAllConnectionsHard function
even if there are no other connected systems at the time. This function call frees any remaining
regions of memory that were used for matchmaking and restores the communication state to the
online state. Calling this function does not close the connection with Nintendo Wi-Fi Connection
server.

The following functions are also provided: the DWC_CloseConnectionHard function closes a
connection by specifying an AID and the DWC_CloseConnectionHardBitmap function closes
multiple connections by specifying an AID bitmap. These functions are designed for use in unusual
circumstances, such as closing connections for a DS that becomes unavailable for communication
because the power is turned off.

8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch
The buffer sizes specified by the DWC_InitFriendsMatch function become the buffer sizes
adopted internally by the DWC. When data is sent using reliable communication, the Send buffer
stores data for which ACK is not returned. The Receive buffer stores data that did not reach the
Receive buffer in the correct order.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 47 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

With reliable communication, you need as much capacity as possible to deal with instantaneous
network interruptions. The Send and Receive buffers both need to be large enough to handle as
much interruption time as the game's specifications permit.

Although the Send and Receive buffers are generally not used with unreliable communication, you
still need a Send buffer of at least 1 kbyte and a Receive buffer of at least 128 bytes because DWC
uses reliable communication internally when connecting peer-to-peer.

Table 8-1 Yardstick for buffer sizes

Kind of Communication Yardstick for Buffer Size Comments

Send buffer
size

Minimum of
1 kbyte

Reliable
Communication

Receive
buffer size

Compute buffer size as: (allowable duration in seconds of
instantaneous interruption as per the game specs) x
(amount of reliable data per second) + (total size of reliable
data).
Total size of reliable data = 7 x (number of divisions in the
data being sent) + (size of data being sent) + 15

Minimum of
128 bytes

Send buffer
size (Max. data size for unreliable communication)＋ 2 bytes Minimum of

1 kbyte Unreliable
Communication

Receive
buffer size Minimum of 128 bytes

Note: The number of divisions in the data sent indicates the number into which the data is divided
when the total data size exceeds the maximum amount of data that can be sent at any one time.
This is specified by the DWC_SetSendSplitMax function (default size: 1,465 bytes).

The following shows an example of how to calculate the required size of the Send and Receive
buffers.

Assume that:

� The game spec allows an instantaneous interruption to last for as long as 1 second
� Communication is performed once every 3 frames
� The maximum amount of data that can be sent at one time is 64 bytes
� The game is sending 100 bytes of data using reliable communication.

In this case, the required size of the Send and Receive buffers is:

1 (second) x (60 (frames) ÷3) x (7 x 2 (divisions) + 100 (bytes) + 15) = 2580 (bytes)

8.4 Emulating Delays and Packet Loss
The DWC library can emulate delays and packet loss for sending and receiving data. For send delays,
the send data is copied to another buffer and kept for a specified amount of time; this data will not be

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 48  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

sent to the partner because the data is deleted when the connection is closed. For this reason, using
only the receive delay is recommended.

The packet loss rate (in units of percent), the delay time (in units of milliseconds), and the AID of the
receiving DS are specified in Code 8-3.

Code 8-3 Emulating Delays and Packet Loss

void set_trans_emulation(void)
{

DWC_SetSendDrop(30, 0);
DWC_SetRecvDrop(30, 0);

DWC_SetSendDelay(300, 0);
DWC_SetRecvDelay(300, 0);
:

}

8.5 Amount of Data Sent and Received
Table 8-1 shows the amount of data transmitted during reliable and unreliable communication.

Table 8-1 Communication Data Breakdown

Send Data Items Send Data Size

Preamble 192 bits (24 bytes)
MAC 24 bytes

LLC 8 bytes
IP 20 bytes
UDP 8 bytes

Reliable Communications Unreliable
Communications

Header send Data send Receive
check Data send DATA

15 bytes 7 + XXX bytes 5 bytes XXX bytes

FCS 4 bytes
B (random time for avoiding packet
collision)

MAX 600 µs (microseconds)

Note: The header send and receive check are sent before and after data send during reliable
communication.

Although you can find the data send time for each transmission based on the formula Preamble +
(MAC + LLC + IP + UDP + DATA + FCS) x 4 + B [µs], it is difficult to accurately calculate the amount

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 49 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

of data sent and received due to the fact that the transmission time varies depending on factors such
as the number of retries required due to bandwidth conditions, the number of sent packets, the
amount of transmission standby to avoid packet collisions, etc.

This section provides figures obtained in experiments for the amount of data sent/received.

Experiments were conducted by measuring throughput, CPU load, and the packet loss ratio while
varying conditions such as the use of reliable or unreliable communication, the AP model and
manufacturer, the amount of radio usage, the send size, and the send frequency. As a result, the
following became clear:

� Send frequency (the number of packets issued) is greatly affected by the presence of back-off
time (including empty intervals between communication and random time for avoiding packet
collisions) of the header part and wireless communication.

� In a four-unit mesh network where data is sent at a rate of once every three frames and the radio
noise is under 10%, the upper limit of send size is in the range 120-150 bytes.

� In a four-unit mesh network where data is sent at a rate of once every three frames and the radio
noise is around 50%, the upper limit of send size is in the range 100-120 bytes.

� When using reliable communication, traffic congestion occurs easily because congestion is
exacerbated by the need to repeatedly resend data when the network is busy. Once this occurs,
recovery time is extended.

Note: Radio noise is generated by using WMTestTool from another DS.

Based on the experimental results above, Nintendo titles communicate as listed below.

� Four-unit mesh network, unreliable communication
Nth frame: Send to Party 1

(N＋1)th frame: Do not send

(N＋2)th frame: Send to Party 2

(N＋3)th frame: Do not send

(N＋4)th frame: Send to Party 3

(N＋5)th frame: Do not send

(Repeats from this point on)

Communication every 60 to 104 bytes

� Four-unit server-client type connection, reliable communication
Send frequency is three frames with a usual send size of 1 to 40 bytes (up to 256 bytes).

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 50  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

9 HTTP Communication
The DWC library provides the GHTTP library to upload and download data using HTTP. You can use
this feature alone without the matchmaking and friend relationship features.

9.1 Preparing to Use the GHTTP Library
You need to initialize the GHTTP library before using it by calling the DWC_InitGHTTP function as
shown in Code 9-1.

Specify NULL for the argument. The returned value will always be TRUE.

If the DWC_InitGHTTP function has been called and the connection to the Internet has been
established, the GHTTP library features are available for use.

Code 9-1 Initializing the GHTTP Library

void init_ghttp(void)
{

// Initialize DWC library
init_dwc();

// Make connection to Internet
if (connect_to_inet()) return;

// Initialize GHTTP
DWC_InitGHTTP(NULL);

}

9.2 Uploading Data
Code 9-2 shows the uploading data process. To upload data to the HTTP server using the GHTTP
library, you must first call the DWC_GHTTPNewPost function and create a DWCGHTTPPost type object.
Next, use the DWC_GHTTPPostAddString function to add the data you want to upload to this object.

For the arguments of the DWC_GHTTPPostAddString function, specify the pointer to the
DWCGHTTPPost type object, the pointer to the key string that specifies the data, and the pointer to the
actual data (the value string) that you want to add.

The key and value strings are both copied and saved in the library.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 51 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

Both strings must terminate with NULL. When NULL is specified for the value string, the string "" that
contains only the NULL terminator is specified.

To begin the actual data upload, use the DWC_PostGHTTPData function. For the arguments of this
function, pass the upload URL destination, the pointer to the DWCGHTTPPost type object, and the
completion callback and its parameters.

After the upload starts, all of the communication processes are carried out inside the
DWC_ProcessGHTTP function. Call this function approximately once per game frame.

The DWCGHTTPPost type object is released immediately after the upload completes and the
completion callback returns.

In Code 9-2, the actual data sent to the HTTP server is a string similar to the following:

 "key1=value1&key2=value2"

If data has been already added to identical DWCGHTTPPost type objects, the following string is
added :

 "key1=value1&key2=value2&key3=value3&key4=value4 …"

Code 9-2 Uploading Data

static int s_send_cb_level = 0;

void post_ghttp_data(void)
{

int req;
DWCGHTTPPost post;

// Create the DWCGHTTPPost type object
DWC_GHTTPNewPost(&post);

// Set the data to upload to the DWCGHTTPPost type object
DWC_GHTTPPostAddString(&post, "key1", "value1");
DWC_GHTTPPostAddString(&post, "key2", "value2");

// Start uploading data
s_send_cb_level++;
req = DWC_PostGHTTPData("http://www.test.net", &post, cb_post, NULL);

if (req < 0)
{

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 52  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

// Error generation.
handle_error();
return;

}

while (s_send_cb_level)
{

// Proceed with the upload process
DWC_ProcessGHTTP();

GameWaitVBlankIntr();
}

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation.
handle_error();
return;

}

// Data upload has succeeded
:

}

// Callback for when upload has completed
void cb_post(const char* buf, int buflen, DWCGHTTPResult result, void* param)
{

s_send_cb_level--;
}

9.3 Downloading Data
The library provides two functions for downloading data from the HTTP server: the simple
DWC_GetGHTTPData function and the expanded feature DWC_GetGHTTPDataEx function shown in
Code 9-3.

For the arguments of the DWC_GetGHTTPDataEx function, pass the data download URL target, the
size of the receive buffer, whether to release the receive buffer after the download completes, a
callback to obtain the communication state and its parameters, and a completion callback and its
parameters.

If the receive buffer size is set to zero, 2048 bytes are initially secured for the memory region;

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 53 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

additional 2048 byte chunks are then secured for receive data up to the limit of the heap region
allocated by the application.

If a callback for getting the communication status has been specified, the callback will be called when
the download sequence status changes (for example, when requests are being sent and data is being
received). If data is being received, you can also check the received data size.

When the download completes, the completion callback is called. If the settings are configured to
release the receive buffer after the download completes, the buffer is released immediately after the
process has exited from this completion callback. Consequently, ensure received data is copied for
use.

If the settings are configured not to release the receive buffer, the GHTTP library will not release the
receive buffer. At a convenient time, release the pointer to the receive buffer passed by the completion
callback argument in the application. To release the receive buffer, use the DWC_Free function.

The DWC_GetGHTTPData function has the same behavior as DWC_GetGHTTPDataEx function with
the arguments bufferlen set to 0, buffer_clear set to TRUE, and progressCallback set to
NULL.

After downloading starts, all communication processes occur inside the DWC_ProcessGHTTP
function. Call this function approximately once every game frame.

Code 9-3 Downloading Data

static char s_recvBuffer[2][SIZE_RECV_BUFFER];
static int s_get_cb_level = 0;

void get_ghttp_data(void)
{

// Start data download using simple function
s_get_cb_level++;
req = DWC_GetGHTTPData("http://www.test.net", cb_get, GET_TYPE_NORMAL);

if (req < 0)
{

// Error generation.
handle_error();
return;

}

// Start data download using expanded function
s_get_cb_level++;
req = DWC_GetGHTTPDataEx("http://www.test.net",

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 54  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

RECV_SIZE, TRUE,
NULL, cb_get, GET_TYPE_EX);

if (req < 0)
{

// Error generation
handle_error();
return;

}

while (s_get_cb_level)
{

// Proceed with the download process
DWC_ProcessGHTTP();

GameWaitVBlankIntr();
}

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation.
handle_error();
return;

}

// Data download has succeeded
:

}

// Callback for when download has completed
void cb_get(const char* buf, int buflen, DWCGHTTPResult result, void* param)
{

s_get_cb_level--;

if (result == DWC_GHTTP_SUCCESS)
{

if ((int)param == GET_TYPE_NORMAL)
{

MI_CpuCopy8(buf, s_recvBuffer[0], SIZE_RECV_BUFFER);
}
else if ((int)param == GET_TYPE_EX)
{

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 55 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

MI_CpuCopy8(buf, s_recvBuffer[1], SIZE_RECV_BUFFER);
}

}
}

9.4 Closing the GHTTP Library
Call the DWC_ShutdownGHTTP function to close the GHTTP library.

You must call the DWC_InitGHTTP() and DWC_ShutdownGHTTP function the same number of times.
If you do not call these functions the same number of times, memory secured by the GHTTP library
will not be freed.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 56  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

10 Communication Errors
The DWC library provides an error handling system for all DWC modules. In this system, DWC errors
are treated like application errors.

10.1 Error Handling
You can obtain the error status in the DWC library using DWC_GetLastErrorEx function as shown
in Code 10-1. The error classification is the return value. The arguments are the error code and the
pointer to the storage location for the error handling type.

The error code is 0 or a negative number. If you are going to show the error code, be sure to invert
the sign so the value is shown as a positive number. However, if it is a recoverable error and the DS
was not disconnected from Nintendo Wi-Fi Connection, you do not need to display the error code.

The error process type indicates the recovery process required after the error occurs, and a routine
error process can be created for each value.

Once the error state has been entered, the DWC library will reject most functions. To return from the
error state, call the DWC_ClearError function.

Code 10-1 Error Handling Process

void main_loop(void)
{

while (1)
{

DWC_ProcessFriendsMatch();

handle_error(); // Error-handling process

GameWaitVBlankIntr();
}
:

}

// Error-handling process
void handle_error(void)
{

int dwcError, gameError;

dwcError = handle_dwc_error();

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 57 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

gameError = handle_game_error();
:

}

int handle_dwc_error(void)
{

int errcode;
DWCError err;
DWCErrorType errtype;

// Get the error
err = DWC_GetLastErrorEx(&errcode, &errtype);

// If there is no error, return without doing anything
if (err == DWC_ERROR_NONE) return 0;

// Clear the error
DWC_ClearError();

// Display an error message
disp_error_message(err);
// If error code is -10000 or lower, display the code as a positive number
if (errcode <= -10000) disp_message("%d", -1*errcode);

if (errtype == DWC_ETYPE_SHUTDOWN_FM)
{

// End the FriendsMatch process
DWC_ShutdownFriendsMatch();

}
else if (errtype == DWC_ETYPE_DISCONNECT)
{

/* End the FriendsMatch process and perform cleanup on Internet
connection */

DWC_ShutdownFriendsMatch();
disconnect_func();

}
else if (errtype == DWC_ETYPE_FATAL)
{

// Fatal Error, so nothing can be done after prompting to turn power off
while (1) ;

}
/* If only a minor error, you can just clear the error and resume the

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 58  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

FriendsMatch process */

return err;
}

10.2 List of Error Codes
This list provides the main error codes that occur during the matchmaking and friend relationship
process.

If the last three digits of an error code are 010 or 020, these errors are likely to occur if the GameSpy
server is in an unstable state (for example, during maintenance).

� 61010 A communication error occurred with the GameSpy GP server during GP server login.
� 61020 A communication error occurred with the GameSpy GP server during GP server login.
� 61070 A login timeout error occurred during GP server login.
� 71010 A communication error occurred with the GameSpy GP server while synchronizing

friend rosters.
� 80430 Connection to the client DS failed for server/client matchmaking because the server DS

that the Client DS was attempting to connect with or the client DS connected to the
server DS was powered off.

� 81010 A communication error occurred with the GameSpy GP server during matchmaking.
� 81020 A communication error occurred with the GameSpy master server during matchmaking.
� 84020 Communication from the GameSpy master server were interrupted during matchmaking.

Either the master server is down or the firewall is blocking UDP.
� 85020 A communication error occurred with the GameSpy master server during matchmaking.
� 85030 The GameSpy master server DNS failed during matchmaking. All error codes with 030

as the last three digits indicate DNS errors.
� 86420 NAT negotiations failed the set number of times during one matchmaking session.

There may be a problem with the router. In server/client matchmaking, this error only
occurs when the client DS that has started connecting and NAT negotiation has failed
even one time.

� 97003 A socket error has occurred in a lower layer than the DWC library after matchmaking
completes.

Error codes with 1010 or 1020 as the last four digits and error code 85020 are known to occur
frequently in the Wi-Fi library for NitroWiFi version 1.0 RC2 and earlier when TCP transfers with the
GameSpy server are delayed.

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 59 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

11 Network Storage Support
The DWC library can store data onto the network storage server provided by GameSpy. Code 11-1
shows you how to use this feature.

To access this storage server, complete the process up to the login using the DWC_LoginAsync
function. Next, log in to the storage server using the DWC_LoginToStorageServerAsync function.

The data to save on the storage server can have public or private attributes. If the data is saved using
the DWC_SavePublicDataAsync function, the data attributes are public and other players can
reference the data.

If the data is saved using the DWC_SavePrivateDataAsync function, the data attributes are private
and other players cannot reference the data.

To load data from the storage server, call the DWC_LoadOwnPublicDataAsync function to load your
own public data, DWC_LoadOwnPrivateDataAsync function to load your own private data, and the
DWC_LoadOthersDataAsync function to load the friend data saved in your friend roster. Friends are
specified by the friend roster index.

When saving or loading data completes, the appropriate callback set by the
DWC_SetStorageServerCallback function is called. These callbacks are always called in the
order that the save and load functions were called.

A string that combines key and value can be specified as saved data. The key/value combinations are
repeated by delimiting with \\, as in \\name\\mario\\stage\\3. If this example data is specified,
“mario” will be registered in the key value name and “3” is registered in the key value stage as a
string.

To load data saved on the storage server, specify the keys that you want to retrieve as
\\name\\stage, separating the name and stage with \\.

In this case, the string that you can get with a load callback would be in the format of
\\name\\mario\\stage\\3.

If you attempt to load a key that does not exist on the storage server or a key that was saved by a
friend who used the private attribute, the success argument of the callback function will be FALSE. If
you specify multiple keys to load and only some of the keys fall into these two categories, the
success argument will be TRUE, but these keys will not be included with the loaded data.

After storage server processing completes, call the DWC_LogoutFromStorageServer function to
log out from the storage server (as in Code 11-1).

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 60  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

Code 11-1 Accessing the Storage Server

static int s_cb_level = 0;
static BOOL s_storage_logined = FALSE;

void access_net_storage(void)
{

// Login to the storage server
if (!DWC_LoginToStorageServerAsync(cb_storage_login, NULL))
{

OS_TPrintf("DWC_LoginToStorageServerAsync() failed.\n");
return;

}

// Wait for login to storage server to complete
while (!s_storage_logined)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation
handle_error();
return;

}

GameWaitVBlankIntr();
}

// Set callbacks for the time when saving and loading complete
DWC_SetStorageServerCallback(cb_save_storage, cb_load_storage);

// Save public data
s_cb_level++;
if (!DWC_SavePublicDataAsync("\\name\\mario\\stage\\3", NULL))
{

OS_TPrintf("DWC_SavePublicDataAsync() failed.\n");
return;

}

// Save private data
s_cb_level++;
if (!DWC_SavePrivateDataAsync("\\id\\100", NULL))
{

OS_TPrintf("DWC_SavePrivateDataAsync() failed.\n");
return;

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 61 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

}

// Wait for saving to complete
while (s_cb_level > 0)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

// Error generation
handle_error();
return;

}

GameWaitVBlankIntr();
}

// Load local saved data
s_cb_level++;
if (!DWC_LoadOwnDataAsync("\\id\\stage", NULL))
{

OS_TPrintf("DWC_LoadOwnDataAsync() failed.\n");
return;

}
// Load ones own private save data
s_cb_level++;
if (!DWC_LoadOwnPrivateDataAsync(“\\id”, NULL))
{
OS_TPrintf(“DWC_LoadOwnPrivateDataAsync() failed.\n”);
return;

}
// Load another player's saved data
s_cb_level++;
if (!DWC_LoadOthersDataAsync("\\name", 0, NULL))
{

OS_TPrintf("DWC_LoadOthersDataAsync() failed.\n");
return;

}

// Wait for loading to complete
while (s_cb_level > 0)
{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))
{

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 62  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

// Error generation
handle_error();
return;

}

GameWaitVBlankIntr();
}

// Log out from storage server
DWC_LogoutFromStorageServer();
:

}

// Callback for the tune when logged in to storage server
void cb_storage_login(DWCError error, void* param)
{

if (error == DWC_ERROR_NONE)
{

s_storage_logined = TRUE;
s_cb_level = 0;

}
}

// Callback for when data is saved to storage server
void cb_save_storage(BOOL success, BOOL isPublic, void* param)
{

OS_TPrintf("result %d, isPublic %d.\n", success, isPublic);
s_cb_level--;

}

// Callback for the time when data loaded from storage server
void cb_load_storage(BOOL success, int index, char* data, int len, void* param
)
{

OS_TPrintf("result %d, index %d, data '%s', len %d\n",
success, index, data, len);

s_cb_level--;
}

NITRO-DWC Programming Manual Nintendo Wi-Fi Connection

 2005-2006 Nintendo 63 NTR-06-0429-001-C
CONFIDENTIAL Released: September 12, 2006

Microsoft, Windows, Internet Explorer and Visual Studio are registered trademarks or trademarks of Microsoft Corporation in the
United States and other countries.

Metrowerks and CodeWarrior are registered trademarks or trademarks of Metrowerks Inc. in the United States and other countries.

Avid, Softimage, SOFTIMAGE|3D and SOFTIMAGE|XSI are registered trademarks or trademarks of Avid Technology Inc.

Maya, Discreet and 3ds max are registered trademarks or trademarks of Autodesk Inc./Autodesk Canada Inc. in the United States and
other countries.

Adobe, Photoshop, Acrobat and Acrobat Reader are registered trademarks or trademarks of Adobe Systems Incorporated.

OPTPiX, web technology and iMageStudio are registered trademarks or trademarks of Web Technology Corp.

All other company names and product names mentioned in this document are the registered trademarks or trademarks of the
respective companies.

Nintendo Wi-Fi Connection NITRO-DWC Programming Manual

NTR-06-0429-001-C 64  2005-2006 Nintendo
Released: September 12, 2006 CONFIDENTIAL

© 2005-2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

	1 Introduction
	2 User Management Under NITRO-DWC
	2.1 Managing Wi-Fi User Information
	2.1.1 User ID and Player ID
	2.1.2 The Difference Between a User ID and Player ID
	2.1.3 Player Information by Game: Login ID
	2.1.4 Information for Wi-Fi Authentication Saved by Games

	2.2 Friend Management Overview
	2.2.1 Building Friend Relationships
	2.2.2 Building Friendships Using DS Wireless Communications
	2.2.3 Building Friendships Using Friend Registration Keys
	2.2.4 Friend Information Saved by Games

	2.3 Exception Handling
	2.3.1 Removing the Association Between a DSt and a DS Card

	3 Initializing Nitro DWC
	4 Creating User Data
	5 Connection Process
	5.1 Connecting to the Internet
	5.2 Disconnecting from the Internet
	5.3 Connecting to the Nintendo Wi-Fi Connection Server

	6 Creating Friend Rosters and Information
	6.1 Exchanging Friend Information via DS Wireless Communications
	6.2 Exchanging Friend Registration Keys
	6.3 Synchronizing Friend Rosters
	6.4 Obtaining Friend Information Types
	6.5 Obtaining Friend Status

	7 Matchmaking
	7.1 Peer Matchmaking Without Specifying Friends
	7.2 Peer Matchmaking by Specifying Friends
	7.3 Evaluating Candidate Players for Matchmaking
	7.4 Server/Client Matchmaking
	7.5 Increasing Matchmaking Speed
	7.6 Names that Cannot be Used for Matchmaking Index Keys

	8 Sending and Receiving Data
	8.1 Peer-to-Peer Data Exchange
	8.2 Closing Connections
	8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch
	8.4 Emulating Delays and Packet Loss
	8.5 Amount of Data Sent and Received

	9 HTTP Communication
	9.1 Preparing to Use the GHTTP Library
	9.2 Uploading Data
	9.3 Downloading Data
	9.4 Closing the GHTTP Library

	10 Communication Errors
	10.1 Error Handling
	10.2 List of Error Codes

	11 Network Storage Support

