
 2011–2013 Nintendo CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

CTR
iWnn Programming Manual

2013/04/11

Version 1.0.9

The content of this document is highly confidential
and should be handled accordingly.

iWnn Programming Manual CTR

CTR-06-0160-001-D 2  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

CTR iWnn Programming Manual

 2011–2013 Nintendo 3 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table of Contents

1 What is iWnn? ... 15

2 Glossary .. 16
2.1 Readings ... 16
2.2 Candidates .. 16
2.3 Phrases ... 17
2.4 Parts of Speech ... 17
2.5 Compound Words ... 17
2.6 Additional Information ... 18
2.7 Complete Match Searches (Forward/Reverse Lookup), Prefix Match Searches (Forward Lookup)

and Derived Searches .. 18
2.8 Various Dictionaries (Integrated, Single Kanji, Ancillary Word, User, Learning, Rule, Customized,

No Reading Prediction) ... 19
2.8.1 Integrated Dictionary ... 19
2.8.2 Single Kanji Dictionary .. 20
2.8.3 Ancillary Word Dictionary .. 20
2.8.4 User Dictionary .. 20
2.8.5 Learning Dictionaries ... 20
2.8.6 Rule Dictionary .. 20
2.8.7 Customized Dictionaries .. 20
2.8.8 No Reading Prediction Dictionary ... 21

2.9 Kana-Kanji Conversion ... 21
2.10 Morphological Analysis ... 21
2.11 Pseudo-Dictionaries .. 21
2.12 Pseudo-Candidates .. 21
2.13 Dictionary Handles .. 22
2.14 Predictions .. 22

3 Using iWnn .. 23
3.1 Defined Values Set at Compile Time .. 23

3.1.1 Maximum Conversion Reading String Length (NJ_MAX_LEN) ... 24
3.1.2 Maximum Conversion Candidate String Length (NJ_MAX_RESULT_LEN) 24
3.1.3 Maximum Additional Information Character Array Length (NJ_MAX_ADDITIONAL_LEN) 24
3.1.4 Maximum Number of Pieces of Additional Information that can be Mounted

(NJ_MAX_ADDITIONAL_INFO) .. 24
3.1.5 Maximum Number of Obtainable Candidates (NJ_MAX_CANDIDATE) 24
3.1.6 Maximum User Dictionary Word Registration String Length (NJ_MAX_USER_LEN) 25
3.1.7 Maximum User Dictionary Word Registration Candidate String Length

(NJ_MAX_USER_CANDIDATE_LEN) .. 25
3.1.8 Maximum User Additional Information String Length (NJ_MAX_USER_ADDITIONAL_LEN) 25
3.1.9 Maximum Number of Registerable Words in a User Dictionary (NJ_MAX_USER_COUNT) 25
3.1.10 Maximum Number of Mountable Dictionaries (NJ_MAX_DIC) .. 25
3.1.11 Maximum Morphological Analysis String Length (MM_MAX_MORPHOLIZE_LEN) 25
3.1.12 Maximum Number of Same Reading Dictionary Lookups during Multiple Phrase Conversion

(NJ_MAX_GET_RESULTS) ... 26

iWnn Programming Manual CTR

CTR-06-0160-001-D 4  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

3.1.13 Maximum Ancillary Word Parsing String Length when Getting All Candidates
(NJ_MAX_ANCILLARY_LEN) ... 26

3.1.14 Maximum Number of Registerable Fuzzy Characters (NJ_MAX_CHARSET) 26
3.1.15 Maximum Cache Size (NJ_SEARCH_CACHE_SIZE) ... 26
3.1.16 String Terminator Size (NJ_TERM_SIZE) .. 26
3.1.17 Maximum Number of Obtainable Candidates (NJ_MAX_CANDIDATE), Maximum Length of

Conversion Reading Strings (NJ_MAX_LEN) ... 26
3.2 Including Header Files ... 27
3.3 Access to Dictionary Files (OnMemory Version Only)... 27

4 List of Used Structures and Functions ... 28
4.1 List of Structures .. 28

4.1.1 Dictionary Sets (IWNN_DIC_SET, IWNN_DIC_INFO, IWNN_FLASH_DIC_INFO) 28
4.1.2 Processing Result (IWNN_RESULT) ... 28
4.1.3 Dictionary Search Cursor (IWNN_CURSOR) ... 28
4.1.4 Word Information (IWNN_WORD_INFO) .. 28
4.1.5 Fuzzy Character Set (IWNN_CHARSET) ... 28
4.1.6 Parsing Information Class (IWNN_CLASS) ... 28
4.1.7 Option Settings (IWNN_OPTION) ... 28
4.1.8 Prediction Options (IWNN_ANALYZE_OPTION) ... 28
4.1.9 State Settings (IWNN_STATE) ... 28
4.1.10 Merge Candidates (IWNN_MERGE_RESULT) ... 28

4.2 List of Functions .. 29
4.2.1 Initialization (NjxInit) .. 29
4.2.2 Get Reading String (NjxGetStroke) ... 29
4.2.3 Get Candidate String (NjxGetCandidate) ... 29
4.2.4 Get Dictionary Handle (NjxGetDicHandle) .. 29
4.2.5 Create Dictionary Region (NjxCreateDic) ... 29
4.2.6 Check Dictionary (NjxCheckDic) .. 29
4.2.7 Get Character Type (NjxGetCharType) .. 29
4.2.8 Change Dictionary Type (NjxChangeDicType) .. 29
4.2.9 Get Prediction Candidate (NjxAnalyze) .. 29
4.2.10 Kana-kanji Conversion (NjxConversion) ... 29
4.2.11 Get All Candidates (NjxAllCandidates) ... 29
4.2.12 Learn (NjxSelect) ... 30
4.2.13 Undo Learning (NjxUndo) ... 30
4.2.14 Search Word (NjxSearchWord) .. 30
4.2.15 Get Word (NjxGetWord) ... 30
4.2.16 Register Word (NjxAddWord) ... 30
4.2.17 Delete Word (NjxDeleteWord) ... 30
4.2.18 Delimited Input (MmxSplitWord).. 30
4.2.19 Get Part of Speech Group (MmxGetPartsOfSpeech) ... 30
4.2.20 Get Reading String for Morphological Analysis (MmxGetReading) .. 30
4.2.21 Learn by Morphological Analysis (MmxSelect) .. 30
4.2.22 Set Options (NjxSetOption) ... 30
4.2.23 Set State (NjxSetState) ... 30

CTR iWnn Programming Manual

 2011–2013 Nintendo 5 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

4.2.24 Get State Setting (NjxGetState) .. 30
4.2.25 Get Word Information (NjxGetWordInfo) .. 31
4.2.26 Get No Conversion Candidates (NjxGetStrokeWord) .. 31
4.2.27 Merge Candidate Lists (NjxMergeWordList) .. 31
4.2.28 Manage Learning Dictionary (NjxManageLearnDic) ... 31
4.2.29 Get Additional Information String (NjxGetAdditionalInfo) .. 31
4.2.30 Check Additional Information Region (NjxCheckAdditionalInfo) 31
4.2.31 Get FLASH Dictionary Cache Size (NjxGetFlashDicCacheSize) .. 31
4.2.32 Set FLASH Dictionary Information (NjxSetFlashDicInfo) .. 31

5 Expiration Period and Applicable Scope of the Process Result Structure .. 32
5.1 Applicable Scope of the Processing Result Structure .. 33

6 Handling Strings .. 34
6.1 Definition of a String .. 34
6.2 Counting the Length of Strings ... 34
6.3 Notes on Input Strings .. 34
6.4 Definitions of Hiragana, Katakana, and Numeric Characters ... 35

7 Operations Overview .. 36
7.1 Startup ... 36
7.2 From Getting Prediction Candidates to Learning .. 38
7.3 From Multiple Phrase Conversion to Learning ... 40
7.4 No Conversion Confirmation ... 41
7.5 Search Registered Words in Dictionary and Get List ... 42
7.6 User Dictionary/Learning Dictionary Initialization ... 44
7.7 Registering Words to the User Dictionary/Learning Dictionary ... 44
7.8 Deleting Words from the User Dictionary/Learning Dictionary ... 45
7.9 Undo Learning ... 46
7.10 Creating a Distributable Dictionary on a Terminal ... 46
7.11 Morphological Analysis (Delimited Input) .. 47
7.12 Automatic Learning When Replying to E-mail (Learning Morphological Analysis Results) 48

8 Detailed Description of Structures .. 50
8.1 Parsing Information Class (IWNN_CLASS) .. 50
8.2 Dictionary Sets (IWNN_DIC_SET, IWNN_DIC_INFO, and IWNN_FLASH_DIC_INFO) 50
8.3 Dictionary Frequency Value Settings .. 53

8.3.1 Limitations on Base Frequency/Maximum Frequency by Dictionary Handle 54
8.3.2 Recommended Values When Using Multiple Customized Dictionaries 55
8.3.3 Recommended Values When Using a No Reading Prediction Dictionary (Start of Text) 56
8.3.4 Recommended Values When Using Learning Results Based on Morphological Analysis 57
8.3.5 Definition of the Standard Dictionary Frequency Value ... 58

8.4 Processing Results (IWNN_RESULT) .. 60
8.5 Dictionary Search Cursor (IWNN_CURSOR)... 62

8.5.1 Search Methods and Search Candidate Order by Dictionary ... 63
8.5.2 Dictionary Type and Search Method ... 64
8.5.3 Search Method and Search Candidate Order ... 65

8.6 Word Registration Information (IWNN_WORD_INFO) .. 65

iWnn Programming Manual CTR

CTR-06-0160-001-D 6  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

8.7 Fuzzy Character Set (IWNN_CHARSET) .. 67
8.8 Option Settings (IWNN_OPTION) ... 68
8.9 Prediction Options (IWNN_ANALYZE_OPTION) .. 70
8.10 State Setting (IWNN_STATE) ... 72

8.10.1 Standard State Settings ... 74
8.11 State Calculation Parameters (IWNN_STATE_CALC_PARAMETER) .. 77
8.12 Merge Candidates (IWNN_MERGE_RESULT) ... 78

9 Detailed Descriptions of Functions ... 79
9.1 Get Reading String Function (NjxGetStroke) .. 79
9.2 Get Candidate String Function (NjxGetCandidate) .. 80
9.3 Get Dictionary Handle Function (NjxGetDicHandle) .. 82
9.4 Create Dictionary Function (NjxCreateDic) .. 83

9.4.1 Size and Number of Registered Entries in User Dictionaries .. 85
9.4.2 Size and Number of Registered Entries in User Dictionaries (With Additional Information) 85
9.4.3 Size and Number of Registered Entries in Learning Dictionaries ... 86

9.5 Initialize Function (NjxInit) .. 87
9.6 Check Dictionary Function (NjxCheckDic) ... 88
9.7 Get Character Type Function (NjxGetCharType) ... 90
9.8 Change Dictionary Type Function (NjxChangeDicType) ... 93
9.9 Get Prediction Candidate Function (NjxAnalyze) .. 94
9.10 Kana-Kanji Conversion Function (NjxConversion) ... 98
9.11 Get All Candidates Function (NjxAllCandidates) .. 100
9.12 Learning Function (NjxSelect) ... 102
9.13 Undo Learning Function (NjxUndo).. 105
9.14 Search Word Function (NjxSearchWord) ... 106
9.15 Get Word Function (NjxGetWord) ... 108
9.16 Add Word Function (NjxAddWord) ... 110
9.17 Delete Word Function (NjxDeleteWord) .. 112
9.18 Split Word Function (MmxSplitWord) .. 113
9.19 Get Part of Speech Group Function (MmxGetPartsOfSpeech) ... 115
9.20 Get Reading String for Morphological Analysis Function (MmxGetReading) 117
9.21 Learn by Morphological Analysis Function (MmxSelect) ... 119
9.22 Set Options Function (NjxSetOption) ... 122
9.23 Set State Function (NjxSetState) .. 122
9.24 Get State Setting Function (NjxGetState) ... 123
9.25 Get Word Information Function (NjxGetWordInfo) ... 124
9.26 Get No Conversion Candidates Function (NjxGetStrokeWord) .. 126
9.27 Merge Candidate Lists Function (NjxMergeWordList) ... 128
9.28 Manage Learning Dictionary Function (NjxManageLearnDic) .. 130
9.29 Get Additional Information String Function (NjxGetAdditionalInfo) 132
9.30 Check Additional Information Function (NjxCheckAdditionalInfo) 134
9.31 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize) 136
9.32 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo) 137

10 Errors .. 139

CTR iWnn Programming Manual

 2011–2013 Nintendo 7 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

11 Pseudo Dictionaries ..143
11.1 Overview ... 143
11.2 Pseudo Dictionary Interface (IWNN_PROGRAM_DIC_IF) ... 144
11.3 Pseudo Dictionary Message (IWNN_PROGRAM_DIC_MESSAGE) .. 145
11.4 Word Registration Information (IWNN_LEARN_WORD) .. 147
11.5 Pseudo Dictionary Processing Specifications ... 147

11.5.1 First Search (NJG_OPERATION_SEARCH) .. 147
11.5.2 Search Next Candidate (NJG_OPERATION_SEARCH_NEXT) ... 150
11.5.3 Get Word Information (NJG_OPERATION_GET_WORD_INFO) .. 152
11.5.4 Get Reading (NJG_OPERATION_GET_STROKE) ... 155
11.5.5 Get Notation (NJG_OPERATION_GET_STR) ... 157
11.5.6 Get Additional Information (NJG_OPERATION_GET_ADDITIONAL) ... 158
11.5.7 Learn (NJG_OPERATION_LEARN) ... 159
11.5.8 Undo Learning (NJG_OPERATION_UNDO_LEARN) ... 160
11.5.9 Add Word (NJG_OPERATION_ADD_WORD) ... 161
11.5.10 Delete Word (NJG_OPERATION_DELETE_WORD) ... 163

11.6 Basic Operation Sequence ... 163

12 Candidate/Dictionary Lookup Filtering ..166
12.1 Overview ... 166
12.2 Dictionary Lookup Filter Interface (IWNN_PHASE1_FILTER_IF) .. 167
12.3 Dictionary Lookup Filter Messages (IWNN_PHASE1_FILTER_MESSAGE) 167
12.4 Candidate Filter Interface (IWNN_PHASE2_FILTER_IF) ... 169
12.5 Candidate Filter Messages (IWNN_PHASE2_FILTER_MESSAGE) ... 169

13 Standard Extension Module ..171
13.1 Overview ... 171
13.2 Standard Pseudo Candidate Dictionary Module (NjexPseudoDic) ... 171

13.2.1 Dictionary Overview .. 171
13.2.2 IWNN_PSEUDO_SET Structure .. 172

13.3 Standard Filtered Prediction Search Dictionary Module (NjexPredictionPseudoDic) 173
13.4 Mixed Number Conversion Dictionary Module (NjexNumericCharPseudoDic) 173
13.5 Number Relationship Prediction Dictionary Module (NjexNumericForecastPseudoDic) 173

Appendix A Character Type Definitions ...174

Appendix B Frequently Asked Questions ...175
B.1 FAQ Regarding Characters and Character Strings .. 175

B.1.1 Q: What range of character codes can be processed? ... 175
B.1.2 Q: How do I register pictograph characters specific to mobile telephones? 175
B.1.3 Q: How do I register the ‘ \ ’ (backslash) character? ... 175
B.1.4 Q: How do I use lines to indicate elongated vowels? .. 176

B.2 FAQ Regarding Dictionaries ... 176
B.2.1 Q: What is the effect of the number and size of dictionaries in the dictionary set? 176
B.2.2 Q: What about various sizes of custom dictionaries? ... 176
B.2.3 Q: Can the maximum number of mountable dictionaries be set to 21 or more? 176

B.3 FAQ Regarding Processing Methods .. 177

iWnn Programming Manual CTR

CTR-06-0160-001-D 8  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

B.3.1 Q: Are there any precautions for using the associative learning flag with the add word function? .. 177
B.3.2 Q: How do I obtain a prediction candidate consisting of the same string as the input string? .. 178
B.3.3 Q: What data should be saved? .. 178
B.3.4 Q: How do I implement an English-kana conversion feature (such as where “かさた” converts to

“adg”)? .. 178
B.3.5 Q: How do I implement a function equivalent to the pseudo candidate function under Advanced

Wnn Ver. 2.3? .. 179
B.3.6 Q: How do I reduce registration speed when batch registering to the learning dictionary? 179

B.4 Miscellaneous FAQ .. 179
B.4.1 Q: Does iWnn support multi-thread processing? ... 179
B.4.2 Q: Can I use a prediction conversion dictionary? .. 179
B.4.3 Q: In what order are candidates obtained by the get prediction candidate function

(NjxAnalyze)? ... 180

Appendix C Dictionary Frequency Settings When Using Multi-lingual Features 181
C.1 Introduction .. 181
C.2 Dictionary Frequency Settings .. 181
C.3 List of Usable Functions .. 184

Appendix D Notes .. 186
D.1 Defined Values Set at Compile Time (Data Types) ... 186
D.2 Defined Values Set at Compile Time (Defined Values) ... 186
D.3 Creating Dictionaries ... 186
D.4 Cold Start/Hot Start ... 186
D.5 FLASH Dictionaries/Non- FLASH Dictionaries .. 186
D.6 Automatic Learning When Replying to E-mail ... 187

Revision History ... 188

Code
Code 8-1 Parsing Class (IWNN_CLASS) Structure Configuration 50
Code 8-2 Dictionary Set (IWNN_DIC_SET, IWNN_DIC_INFO, and IWNN_FLASH_DIC_INFO)

Structure Configuration 50
Code 8-3 Processing Result (IWNN_RESULT) Structure Configuration 60
Code 8-4 Dictionary Search Cursor (IWNN_CURSOR) Structure Configuration 62
Code 8-5 Search Condition (IWNN_SEARCH_CONDITION) Structure Configuration 62
Code 8-6 Word Registration Information (IWNN_WORD_INFO) Structure Configuration 65
Code 8-7 Fuzzy Character Set (IWNN_CHARSET) Structure Configuration 67
Code 8-8 Fuzzy Search Character Set (IWNN_CHARSET) Structure Definition Example 68
Code 8-9 Option Settings (IWNN_OPTION) Structure Configuration 68
Code 8-10 Analysis Options (IWNN_ANALYZE_OPTION) Structure Configuration 70
Code 8-11 State Setting (IWNN_STATE) Structure Configuration 72
Code 8-12 State Calculation Parameters (IWNN_STATE_CALC_PARAMETER) Structure Configuration 77
Code 8-13 Merge Candidates (IWNN_MERGE_RESULT) Structure Configuration 78
Code 9-1 Get Reading String Function (NjxGetStroke) Declaration 79
Code 9-2 Get Candidate String Function (NjxGetCandidate) Declaration 80
Code 9-3 Get Dictionary Handle Function (NjxGetDicHandle) Declaration 82

CTR iWnn Programming Manual

 2011–2013 Nintendo 9 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Code 9-4 Create Dictionary Function (NjxCreateDic) Declaration 83
Code 9-5 Initialize Function (NjxInit) Declaration 87
Code 9-6 Check Dictionary Function (NjxCheckDic) Declaration 88
Code 9-7 Get Character Type Function (NjxGetCharType) Declaration 92
Code 9-8 Change Dictionary Type Function (NjxChangeDicType) Declaration 93
Code 9-9 Get Prediction Candidate Function (NjxAnalyze) Declaration 96
Code 9-10 Kana-Kanji Function (NjxConversion) Declaration 99
Code 9-11 Get All Candidates Function (NjxAllCandidates) Declaration 101
Code 9-12 Learning Function (NjxSelect) Declaration 103
Code 9-13 Undo Learning Function (NjxUndo) Declaration 105
Code 9-14 Search Word Function (NjxSearchWord) Declaration 106
Code 9-15 Get Word Function (NjxGetWord) Declaration 108
Code 9-16 Add Word Function (NjxAddWord) Declaration 110
Code 9-17 Delete Word Function (NjxDeleteWord) Declaration 112
Code 9-18 Split Word Function (MmxSplitWord) Declaration 114
Code 9-19 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Declaration 116
Code 9-20 Get Reading String for Morphological Analysis Function (MmxGetReading) Declaration 117
Code 9-21 Learn by Morphological Analysis Function (MmxSelect) Declaration 119
Code 9-22 Option Settings Function (NjxSetOption) Declaration 122
Code 9-23 Set State Function (NjxSetState) Declaration 123
Code 9-24 Get State Setting Function (NjxGetState) Declaration 123
Code 9-25 Get Word Information Function (NjxGetWordInfo) Declaration 124
Code 9-26 Get No Conversion Candidate Function (NjxGetStrokeWord) Declaration 126
Code 9-27 Merge Candidate Lists Function (NjxMergeWordList) Declaration 128
Code 9-28 Manage Learning Dictionary Operation Function (NjxManageLearnDic) Declaration 130
Code 9-29 Get Additional Information String Function (NjxGetAdditionalInfo) Declaration 133
Code 9-30 Check Additional Information Function (NjxCheckAdditionalInfo) Declaration 134
Code 9-31 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize) Declaration 136
Code 9-32 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo) Declaration 137
Code 11-1 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Declaration 144
Code 11-2 Pseudo Dictionary Message (IWNN_PROGRAM_DIC_MESSAGE) Structure Configuration 145
Code 11-3 Word Registration Information (IWNN_LEARN_WORD) Structure Configuration 147
Code 11-4 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Get/Set Example 154
Code 11-5 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Declaration 154
Code 12-1 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Definition 167
Code 12-2 Dictionary Lookup Filter Messages (IWNN_PHASE1_FILTER_MESSAGE) Structure

Configuration 167
Code 12-3 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Definition 169
Code 12-4 Candidate Filter Message (IWNN_PHASE2_FILTER_MESSAGE) Structure Configuration 169
Code 13-1 IWNN_PSEUDO_SET Structure Configuration 172

iWnn Programming Manual CTR

CTR-06-0160-001-D 10  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Tables
Table 2-1 Example Configuration of Independent Words and Ancillary Words 17
Table 2-2 Supported Dictionary Formats and Search Functions Available With Each Dictionary 19
Table 2-3 Example of Kana-Kanji Conversion 21
Table 2-4 Example of Morphological Analysis 21
Table 2-5 Example of Prediction 22
Table 3-1 Data Types 23
Table 5-1 Applicable Scope of the Processing Result Structure 33
Table 6-1 wchar_t (unsigned short) Array 34
Table 8-1 IWNN_DIC_SET Structure Members 52
Table 8-2 IWNN_DIC_INFO Structure Members 52
Table 8-3 Recommended Values When Using Multiple Customized Dictionaries 55
Table 8-4 Recommended Values When Using a No Reading Prediction Dictionary (Start of Text) 56
Table 8-5 When Prioritizing Morphological Analysis Results 57
Table 8-6 When Prioritizing the Learning Dictionary 58
Table 8-7 Standard Dictionary Frequency Value Definitions 59
Table 8-8 Structure Members 61
Table 8-9 Operation Information 61
Table 8-10 Structure Members 63
Table 8-11 Search Method and Search Candidate Order by Dictionary 64
Table 8-12 Dictionary Type and Search Method 64
Table 8-13 Search Method and Search Candidate Order 65
Table 8-14 Word Registration Information Structure Members 66
Table 8-15 Fuzzy Character Set Structure Members 67
Table 8-16 Option Settings Structure Members 69
Table 8-17 Prediction Options Structure Members 70
Table 8-18 Prediction Options Parsing Limits 71
Table 8-19 State Setting Structure Members 73
Table 8-20 Standard State Settings (16 Categories) 74
Table 8-21 Standard State Settings (32 Categories) 75
Table 8-22 State Calculation Parameters Structure Members 77
Table 8-23 Merge Candidates Structure Members 78
Table 9-1 Get Reading String Function (NjxGetStroke) Arguments 79
Table 9-2 Get Reading String Function (NjxGetStroke) Return Values 79
Table 9-3 Get Reading String Function (NjxGetStroke) Errors 80
Table 9-4 Get Candidate String Function (NjxGetCandidate) Arguments 81
Table 9-5 Get Candidate String Function (NjxGetCandidate) Return Values 81
Table 9-6 Get Candidate String Function (NjxGetCandidate) Errors 81
Table 9-7 Get Dictionary Handle Function (NjxGetDicHandle) Arguments 82
Table 9-8 Get Dictionary Handle Function (NjxGetDicHandle) Return Values 82
Table 9-9 Get Dictionary Handle Function (NjxGetDicHandle) Errors 83
Table 9-10 Create Dictionary Function (NjxCreateDic) Arguments 84
Table 9-11 Create Dictionary Function (NjxCreateDic) Return Values 84
Table 9-12 Create Dictionary Function (NjxCreateDic) Errors 84
Table 9-13 Size and Number of Registered Entries in User Dictionaries 85
Table 9-14 Size and Number of Registered Entries in User Dictionaries (With Additional Information) 86
Table 9-15 Size and Number of Registered Entries in Learning Dictionaries (iWnn Type) 86

CTR iWnn Programming Manual

 2011–2013 Nintendo 11 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-16 Size and Number of Registered Entries in Learning Dictionaries (iWnn Type With Additional
Information) 86

Table 9-17 Size and Number of Registered Entries in Learning Dictionaries (AWnn Type) 87
Table 9-18 Initialize Function (NjxInit) Arguments 88
Table 9-19 Initialize Function (NjxInit) Return Values 88
Table 9-20 Initialize Function (NjxInit) Errors 88
Table 9-21 Check Dictionary Function (NjxCheckDic) Arguments 89
Table 9-22 Check Dictionary Function (NjxCheckDic) Return Values 89
Table 9-23 Check Dictionary Function (NjxCheckDic) Errors 89
Table 9-24 List of Character Types 91
Table 9-25 When Independent/Ancillary Words Cannot be Distinguished From the Source of the

Process Result (result) 91
Table 9-26 Get Character Type Function (NjxGetCharType) Arguments 92
Table 9-27 Get Character Type Function (NjxGetCharType) Return Values 92
Table 9-28 Get Character Type Function (NjxGetCharType) Errors 93
Table 9-29 Change Dictionary Type Function (NjxChangeDicType) Arguments 94
Table 9-30 Change Dictionary Type Function (NjxChangeDicType) Return Values 94
Table 9-31 Change Dictionary Type Function (NjxChangeDicType) Errors 94
Table 9-32 Dictionaries Used for Each Prediction/Conversion Process 95
Table 9-33 Get Prediction Candidate Function (NjxAnalyze) Arguments 97
Table 9-34 Get Prediction Candidate Function (NjxAnalyze) Return Values 97
Table 9-35 Get Prediction Candidate Function (NjxAnalyze) Errors 97
Table 9-36 Kana-Kanji Function (NjxConversion) Arguments 99
Table 9-37 Kana-Kanji Function (NjxConversion) Return Values 99
Table 9-38 Kana-Kanji Function (NjxConversion) Errors 100
Table 9-39 Get All Candidates Function (NjxAllCandidates) Arguments 101
Table 9-40 Get All Candidates Function (NjxAllCandidates) Return Values 102
Table 9-41 Get All Candidates Function (NjxAllCandidates) Errors 102
Table 9-42 Learning Function (NjxSelect) Arguments 103
Table 9-43 Learning Function (NjxSelect) Return Values 103
Table 9-44 Learning Function (NjxSelect) Errors 104
Table 9-45 Undo Learning Function (NjxUndo) Arguments 105
Table 9-46 Undo Learning Function (NjxUndo) Return Values 105
Table 9-47 Undo Learning Function (NjxUndo) Errors 106
Table 9-48 Search Word Function (NjxSearchWord) Arguments 107
Table 9-49 Search Word Function (NjxSearchWord) Return Values 107
Table 9-50 Search Word Function (NjxSearchWord) Errors 107
Table 9-51 Get Word Function (NjxGetWord) Arguments 109
Table 9-52 Get Word Function (NjxGetWord) Return Values 109
Table 9-53 Get Word Function (NjxGetWord) Errors 109
Table 9-54 Add Word Function (NjxAddWord) Arguments 110
Table 9-55 Add Word Function (NjxAddWord) Return Values 111
Table 9-56 Add Word Function (NjxAddWord) Errors 111
Table 9-57 Delete Word Function (NjxDeleteWord) Arguments 112
Table 9-58 Delete Word Function (NjxDeleteWord) Return Values 112
Table 9-59 Delete Word Function (NjxDeleteWord) Errors 113
Table 9-60 Split Word Function (MmxSplitWord) Arguments 114
Table 9-61 Split Word Function (MmxSplitWord) Return Values 114

iWnn Programming Manual CTR

CTR-06-0160-001-D 12  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-62 Split Word Function (MmxSplitWord) Errors 115
Table 9-63 Macros for String Length or Word Boundary 115
Table 9-64 Part of Speech Groups 116
Table 9-65 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Arguments 116
Table 9-66 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Return Values 116
Table 9-67 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Errors 116
Table 9-68 Get Reading String for Morphological Analysis Function (MmxGetReading) Arguments 118
Table 9-69 Get Reading String for Morphological Analysis Function (MmxGetReading) Return Values 118
Table 9-70 Get Reading String for Morphological Analysis Function (MmxGetReading) Errors 119
Table 9-71 Learn by Morphological Analysis Function (MmxSelect) Arguments 120
Table 9-72 Learn by Morphological Analysis Function (MmxSelect) Return Values 120
Table 9-73 Learn by Morphological Analysis Function (MmxSelect) Errors 120
Table 9-74 Option Settings Function (NjxSetOption) Arguments 122
Table 9-75 Option Settings Function (NjxSetOption) Return Values 122
Table 9-76 Option Settings Function (NjxSetOption) Errors 122
Table 9-77 Set State Function (NjxSetState) Arguments 123
Table 9-78 Set State Function (NjxSetState) Return Values 123
Table 9-79 Set State Function (NjxSetState) Errors 123
Table 9-80 Get State Setting Function (NjxGetState) Arguments 124
Table 9-81 Get State Setting Function (NjxGetState) Return Values 124
Table 9-82 Get State Setting Function (NjxGetState) Errors 124
Table 9-83 Get Word Information Function (NjxGetWordInfo) Arguments 125
Table 9-84 Get Word Information Function (NjxGetWordInfo) Return Values 125
Table 9-85 Get Word Information Function (NjxGetWordInfo) Errors 126
Table 9-86 Get No Conversion Candidate Function (NjxGetStrokeWord) Arguments 127
Table 9-87 Get No Conversion Candidate Function (NjxGetStrokeWord) Return Values 127
Table 9-88 Get No Conversion Candidate Function (NjxGetStrokeWord) Errors 127
Table 9-89 Merge Candidate Lists Function (NjxMergeWordList) Arguments 129
Table 9-90 Merge Candidate Lists Function (NjxMergeWordList) Return Values 129
Table 9-91 Merge Candidate Lists Function (NjxMergeWordList) Errors 130
Table 9-92 Manage Learning Dictionary Operation Function (NjxManageLearnDic) Arguments 131
Table 9-93 Manage Learning Dictionary Operation Function (NjxManageLearnDic) Return Values 131
Table 9-94 Manage Learning Dictionary Operation Function (NjxManageLearnDic) Errors 132
Table 9-95 Learning Dictionary Operations 132
Table 9-96 Get Additional Information String Function (NjxGetAdditionalInfo) Arguments 133
Table 9-97 Get Additional Information String Function (NjxGetAdditionalInfo) Return Values 134
Table 9-98 Get Additional Information String Function (NjxGetAdditionalInfo) Errors 134
Table 9-99 Check Additional Information Function (NjxCheckAdditionalInfo) Arguments 135
Table 9-100 Check Additional Information Function (NjxCheckAdditionalInfo) Return Values 135
Table 9-101 Check Additional Information Function (NjxCheckAdditionalInfo) Errors 136
Table 9-102 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize) Arguments 136
Table 9-103 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize) Return Values 137
Table 9-104 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize) Errors 137
Table 9-105 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo) Arguments 138
Table 9-106 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo) Return Values 138
Table 9-107 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo) Errors 138
Table 10-1 Argument Errors Caused by the Application 139
Table 10-2 Errors Requiring a Change to the Environment 141

CTR iWnn Programming Manual

 2011–2013 Nintendo 13 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 10-3 Errors Requiring a Dictionary to be Checked or Created 142
Table 11-1 Pseudo Dictionary Examples 143
Table 11-2 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Arguments 144
Table 11-3 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Return Values 145
Table 11-4 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Errors 145
Table 11-5 Pseudo Dictionary Message (IWNN_PROGRAM_DIC_MESSAGE) Structure Members 146
Table 11-6 Word Registration Information (IWNN_LEARN_WORD) Structure Members 147
Table 11-7 First Search (NJG_OPERATION_SEARCH) Input Parameters 148
Table 11-8 First Search (NJG_OPERATION_SEARCH) Output 149
Table 11-9 Search Next Candidate (NJG_OPERATION_SEARCH_NEXT) Input Parameters 150
Table 11-10 Search Next Candidate (NJG_OPERATION_SEARCH_NEXT) Output 152
Table 11-11 Get Word Information (NJG_OPERATION_GET_WORD_INFO) Input Parameters 153
Table 11-12 Get Word Information (NJG_OPERATION_GET_WORD_INFO) Output 153
Table 11-13 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Arguments 155
Table 11-14 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Return Values 155
Table 11-15 Get Reading (NJG_OPERATION_GET_STROKE) Input Parameters 156
Table 11-16 Get Reading (NJG_OPERATION_GET_STROKE) Output 156
Table 11-17 Get Notation (NJG_OPERATION_GET_STR) Input Parameters 157
Table 11-18 Get Notation (NJG_OPERATION_GET_STR) Output 157
Table 11-19 Get Additional Information (NJG_OPERATION_GET_ADDITIONAL) Input Parameters 158
Table 11-20 Get Additional Information (NJG_OPERATION_GET_ADDITIONAL) Output 158
Table 11-21 Learn (NJG_OPERATION_LEARN) Input Parameters 159
Table 11-22 Learn (NJG_OPERATION_LEARN) Output 160
Table 11-23 Undo Learning (NJG_OPERATION_UNDO_LEARN) Input Parameters 161
Table 11-24 Undo Learning (NJG_OPERATION_UNDO_LEARN) Output 161
Table 11-25 Add Word (NJG_OPERATION_ADD_WORD) Input Parameters 161
Table 11-26 Add Word (NJG_OPERATION_ADD_WORD) Output 162
Table 11-27 Delete Word (NJG_OPERATION_DELETE_WORD) Input Parameters 163
Table 11-28 Delete Word (NJG_OPERATION_DELETE_WORD) Output 163
Table 12-1 Phase for Executing Dictionary Lookup Filter and Candidate Filter 166
Table 12-2 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Arguments 167
Table 12-3 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Return Values 167
Table 12-4 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Errors 167
Table 12-5 Dictionary Lookup Filter Messages (IWNN_PHASE1_FILTER_MESSAGE) Structure Members 168
Table 12-6 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Arguments 169
Table 12-7 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Return Values 169
Table 12-8 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Errors 169
Table 12-9 Candidate Filter Message (IWNN_PHASE2_FILTER_MESSAGE) Structure Members 170
Table 13-1 Pseudo Candidate Types 171
Table 13-2 IWNN_PSEUDO_SET Structure Members 172
Table A-1 Definition of Hiragana Characters 174
Table A-1 Definition of Katakana Characters 174
Table A-3 Half-width Katakana Characters 174
Table B-1 Octal Notation to Express Pictograph Code to Register the Pictograph in the Dictionary 175
Table B-2 Octal Notation to Register the Backslash Character 175
Table B-3 Various Sizes of Custom Dictionaries 176
Table B-4 Learning Information Registered in the Learning Dictionary by the Learning Function 177
Table B-5 Pictograph Code Registered in the Dictionary by Using the Add Word Function 177
Table B-6 Learning Information Is Registered in the Learning Dictionary 177

iWnn Programming Manual CTR

CTR-06-0160-001-D 14  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table B-7 Pictograph Code Connected Through Associative Learning 178
Table C-1 Frequency Settings for English Dictionaries 182
Table C-2 Frequency Settings for Korean Dictionaries 183
Table C-3 Frequency Settings for Chinese (Simplified) Dictionaries 183
Table C-4 Frequency Settings for Chinese (Traditional) Dictionaries 184
Table C-5 List of Usable Functions (○: Usable,－: Not Usable) 184

Figures
Figure 1-1 Typical Relationships When Embedding iWnn 15
Figure 5-1 Example of Timing for Getting Process Results 32
Figure 7-1 Startup 37
Figure 7-2 Learning From Obtained Prediction Candidates 39
Figure 7-3 From Multiple Phrase Conversion to Learning 41
Figure 7-4 Confirming No Conversion 42
Figure 7-5 Searching for Registered Words in the Dictionary and Getting a List 43
Figure 7-6 User Dictionary/Learning Dictionary Initialization 44
Figure 7-7 Registering Words to the User Dictionary/Learning Dictionary 44
Figure 7-8 Deleting Words from the User Dictionary/Learning Dictionary 45
Figure 7-9 Undo Learning 46
Figure 7-10 Creating a Distributable Dictionary on a Terminal 47
Figure 7-11 Morphological Analysis (Delimited Input) 47
Figure 7-12 Automatic Learning When Replying to E-mail (Learning Morphological Analysis Results) 49
Figure 8-1 Dictionary Frequency Setting Example 54
Figure 11-1 Flow From Prediction Conversion to Candidate Confirmation 164
Figure 11-2 Flow from Morphological Analysis to Morphological Learning 165
Figure C-1 Dictionary Frequency Setting Example 181

CTR iWnn Programming Manual

 2011–2013 Nintendo 15 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

1 What is iWnn?
iWnn is integrated language processing middleware for embedded devices. It provides a full line of
language processing features, such as those listed below.

• Multilingual prediction conversion (Japanese, English, Chinese, Korean, and so forth).
• Japanese kana-kanji conversion.
• Japanese morphological analysis (split words, attached readings).
• Dictionary search capabilities.

The following typical relationships apply when embedding iWnn.

Figure 1-1 Typical Relationships When Embedding iWnn

 Application

i Wnn

Text Editor UI

Dictionary File Pseudo - dictionary

Database

Basically, the iWnn engine provides a conversion feature from a generic text string representing a
phonetic value, to a standard text string with the correct surface characters. Various languages can be
supported by switching the dictionary. In addition, data in built-in terminal databases (such as a call
log) can be used as a conversion dictionary (pseudo-dictionary).

However, a user interface (UI) is not included. A separate module (text editor UI block) must be
provided for getting key events and displaying conversion candidates.

iWnn Programming Manual CTR

CTR-06-0160-001-D 16  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

2 Glossary
2.1 Readings

The reading is the string input to iWnn. Although the reading is treated as the input string by functions
besides those for morphological analysis, the reading has the significance of the attached reading
string when using functions for morphological analysis.

• String to be converted using kana-kanji conversion.
Reading “わたしは” Conversion Candidate “私は”

• Words registered in the dictionary.
Reading “おむろん” Candidate “オムロン”

• Morphological Analysis.
Input string “私は田中です” Split words “私は””田中です”

 Readings: “わたしは””たなかです”

2.2 Candidates
This is a list obtained by iWnn, a word registered in the dictionary, or a list obtained by getting
predicted candidates.

• List of all candidates obtained from kana-kanji conversion.
Reading “わたしは” Conversion Candidate “私は”

 Get all candidates Candidate “私は”

 Candidate “わたしは”

 Candidate “渡しは”

 Candidate “ワタシハ”

• Word registered in dictionary.
Reading “おむろん” Candidate “オムロン”

• List obtained by getting predicted candidates.
Reading “あ” Search/Conversion Candidate “明日”

 Candidate “亜”

CTR iWnn Programming Manual

 2011–2013 Nintendo 17 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

2.3 Phrases
A phrase is a unit made up of an independent word, or an independent word and an ancillary word.

For example, the Japanese sentence below:

• 今日は良い天気ですね

comprises the following phrases.

Table 2-1 Example Configuration of Independent Words and Ancillary Words

Phrase Independent
Word

Ancillary
Word

Phrase 1 今日 は

Phrase 2 良 い

Phrase 3 天気 ですね

In order to increase conversion accuracy during kana-kanji conversion and predictive conversion by
iWnn, certain ancillary words may be registered as independent words in the dictionary, as a matter of
convenience.

Even an ancillary word by itself sometimes creates a phrase during morphological analysis by iWnn.

2.4 Parts of Speech
The part of speech is an attribute used to classify the nature or behavior of a word. This includes parts
of speech such as nouns, proper nouns, and so forth.

2.5 Compound Words
A compound word is a word that consists of more than one independent word. If a compound word is
registered in the dictionary, it is handled as a single independent word by iWnn.

• Dictionary Registered Word Example 1
Reading Candidate
“とうきょうと” “東京都”
Conversion Result Example
Phrase 1 “東京都”
Dictionary Registered Word Example 2

• Reading Candidate
“とうきょう” “東京”

“と” “都”

iWnn Programming Manual CTR

CTR-06-0160-001-D 18  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Conversion Result Example
Phrase 1 “東京”

Phrase 2 “都”

2.6 Additional Information
This is additional information, given in text format, which is added to candidates obtained by iWnn.

• Example 1: Chinese Language Example
Reading “nihao” Candidate “你好” Additional Information “Ni3Hao3”

• Example 2: Phonetic Data Example
Reading “きよう” Candidate “器用” Additional Information “up1-1, キヨー”

Additional information includes both learnable additional information and unlearnable additional
information. Whether or not additional information is learnable can be specified at the time a dictionary
is created. (Additional information in a user dictionary or learning dictionary is always learnable.)

2.7 Complete Match Searches (Forward/Reverse Lookup), Prefix
Match Searches (Forward Lookup) and Derived Searches

Forward lookup refers to searching for candidates using the reading as a key. Reverse lookup refers to
searching for a reading using a candidate as a key.

Forward lookup Reading “わたし” Candidate “私”

Reverse lookup Reading “私” Candidate “わたし”

Complete match search refers to searching for candidates that have the exact same reading string as
a specified reading string.

• Complete match search Reading “かく” Candidates “書く” “描く” “各”

Prefix match search refers to searching for candidates that have a reading string that starts with a
specified reading string.

• Prefix match search Reading “か” Candidates “課” “科” “回” “傘”

Derived search refers to searching for candidates that follow a specified word.

• Relationship information: “田中”-“太郎”, “田中”-“花子”

• Specified word: “田中” Derived search result: “太郎” “花子”

CTR iWnn Programming Manual

 2011–2013 Nintendo 19 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 2-2 Supported Dictionary Formats and Search Functions Available With Each
Dictionary

Dictionary Format Feature Dictionary

Dictionary for forward lookup
complete match search

Forward lookup complete match
search feature

Single kanji dictionary (njtan.a)
Ancillary word dictionary
(njfzk.a)

Dictionary for forward lookup prefix
match searches

Forward lookup complete match
search feature
Forward lookup prefix match search
feature

Customized dictionary

Dictionary for derived searches

Forward lookup complete match
search feature
Forward lookup prefix match search
feature
Connection search feature

Learning dictionary

Dictionary for reverse lookup
complete match searches

Forward lookup complete match
search feature
Forward prefix match search
feature
Reverse lookup complete match
search feature

Single kanji dictionary
(njtan.a)*
User dictionary
Customized dictionary *

Integrated dictionary

Reverse lookup complete match
search feature
Reverse lookup prefix match search
feature
Reverse lookup complete match
search feature
Reverse lookup prefix match search
feature
Derived search feature

Single kanji dictionary
(njubase1.a)
Integrated dictionary
(njubase2.a)

* For versions of iWnn that support morphological analysis.

Note: The rule dictionary (njcon.a) and no reading prediction dictionary (njyomi.a) are provided in
formats other than those listed above.

2.8 Various Dictionaries (Integrated, Single Kanji, Ancillary Word,
User, Learning, Rule, Customized, No Reading Prediction)

2.8.1 Integrated Dictionary
This dictionary stores words used in conversion, prediction (standard prediction and connection
prediction), and morphological analysis.

The integrated dictionary is provided in two integrated dictionary files (njubase1.a and
njubase2.a).

iWnn Programming Manual CTR

CTR-06-0160-001-D 20  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

2.8.2 Single Kanji Dictionary
This dictionary is a collection of single kanji.

The single kanji dictionary is provided as a dictionary binary file (njtan.a), for forward lookup
complete match or reverse lookup complete match searches.

2.8.3 Ancillary Word Dictionary
This dictionary is a collection of ancillary words.

The ancillary word dictionary is provided as a dictionary binary file (njfzk.a), for forward lookup
complete match searches.

2.8.4 User Dictionary
The user dictionary allows words to be added using a function for registering words.

The user dictionary is in a form that allows reverse lookup complete match searches. User dictionaries
are created using a function for creating a dictionary region in memory.

2.8.5 Learning Dictionaries
Learning dictionaries save learning results.

Learning dictionaries are in a form that allows derived searches. They are created using a function for
creating a dictionary region in memory. There are two types of learning dictionaries (AWnn or iWnn).
AWnn supports only single word searches.

2.8.6 Rule Dictionary
The rule dictionary saves connection rules for words.

The rule dictionary is provided as a binary file (njcon.a).

2.8.7 Customized Dictionaries
Customized dictionaries are for distribution.

There are two types of customized dictionaries: uncompressed dictionaries that allow connection
learning and compressed dictionaries.

A compressed dictionary can be used as a dictionary for forward lookup complete match, forward
lookup prefix match, or reverse lookup complete match searches. Uncompressed dictionaries are in a
form that allows derived searches.

Customized dictionaries can be created using a dictionary binary file creation tool.

CTR iWnn Programming Manual

 2011–2013 Nintendo 21 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

2.8.8 No Reading Prediction Dictionary
A no reading prediction dictionary is a collection of words used in situations where no reading has been
input.

The no reading prediction dictionary is provided as a binary file (njyomi.a).

2.9 Kana-Kanji Conversion
Kana-kanji conversion is a process where independent and ancillary words are searched based on the
reading input to the device and the result is converted into a well-formed Japanese sentence.

Table 2-3 Example of Kana-Kanji Conversion

Reading Kana-Kanji Conversion Result
(Multiple Phrase Conversion)

“きょうはよいてんきですね” “今日は良い天気ですね”

2.10 Morphological Analysis
Morphological analysis takes the input text and parses it into the smallest possible units in Japanese
(morpheme).

The morphological analysis capability of iWnn parses the input text into phrase units, and then further
parses specified phrases into independent and ancillary words.

Table 2-4 Example of Morphological Analysis

Input Text Morphological Analysis Result

“今日は良い天気ですね”
Phrase 1 “今日は”
Phrase 2 “良い”
Phrase 3 “天気ですね”

2.11 Pseudo-Dictionaries
In addition to dictionaries formed from standard data files, a program module that returns conversion
candidates for an input string can be treated as a pseudo-dictionary.

This type of program module is called a pseudo-dictionary.

2.12 Pseudo-Candidates
Candidates created by the pseudo-candidate creation dictionary module (NjexPseudo) are called
pseudo-candidates.

iWnn Programming Manual CTR

CTR-06-0160-001-D 22  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

A candidate can be identified as a pseudo-candidate (created through pseudo-candidate creation)
whenever a value other than zero results from specifying the operationId member of the processing
result structure (IWNN_RESULT), to be described later, to the NJ_GET_PSEUDO_BIT macro.

However, once a pseudo-candidate has been learned, it cannot be identified as a pseudo-candidate
because it will be treated as registered in a dictionary.

2.13 Dictionary Handles
A dictionary handle is the start address of each dictionary used by iWnn, or an interface function
pointer to a pseudo-dictionary.

In the case of standard dictionaries, load the dictionary file into a memory region for dictionaries and
specify a start address for that memory region.

2.14 Predictions
Prediction is an operation where a search is made for candidates having a reading string that starts
with the reading input.

Table 2-5 Example of Prediction

Input Reading Prediction Candidates

“あ”
“明日”
“明後日”
“後で”

CTR iWnn Programming Manual

 2011–2013 Nintendo 23 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

3 Using iWnn
3.1 Defined Values Set at Compile Time

Specify the following parameters when compiling iWnn from source code.

The parameters are defined in nj_lib.h.

Note: The only character encoding supported by all iWnn functions is Unicode (UTF-16BE).

Data types (u8, u16, u32, s8, s16, s32, wchar_t, void)

Defines 8-bit, 16-bit, and 32-bit data types.

If int is a 32-bit type, s32 is defined as int and u32 is defined as unsigned int.

Be sure to specify unsigned short (two bytes) for wchar_t when using Unicode (UTF-16BE).

Note: For information on whether or not a data type can be changed, see D.1 Defined Values Set at
Compile Time (Data Types).

Table 3-1 Data Types

Macro Bit Width C Language Type in a 32-bit Environment
(example)

s8 Signed 8-bit char

s16 Signed 16-bit short

s32 Signed 32-bit int OR long

u8 Unsigned 8-bit unsigned char

u16 Unsigned 16-bit unsigned short

u32 Unsigned 32-bit unsigned int OR unsigned long

wchar_t
When using UTF-16BE:
Unsigned 16-bit

unsigned short

void
void type
(used in void * declarations)

void

IWNN_FILE
File stream type
(Used as a file stream type)

void

Note: For information on whether the defined values listed below can be changed, refer to section D.2
Defined Values Set at Compile Time (Defined Values).

iWnn Programming Manual CTR

CTR-06-0160-001-D 24  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

3.1.1 Maximum Conversion Reading String Length (NJ_MAX_LEN)
This defines the maximum reading string length to undergo conversion/prediction, and the maximum
string length of words added to the learning dictionary.

The string length given specifies the number of elements in the wchar_t array. (This is specified in 2-
byte units when using UTF-16BE.) The number of characters is configured, excluding the terminal
character.

If you reduce the maximum reading string length, adjustments must be made so that none of the
candidates in the dictionary exceed the maximum reading string length.

Minimum: 20, Maximum: NJ_MAX_RESULT_LEN, Default: 40

3.1.2 Maximum Conversion Candidate String Length (NJ_MAX_RESULT_LEN)
This defines the maximum string length for conversion result strings and the maximum word candidate
string length that can be registered in the learning dictionary.

It specifies the number of elements in the wchar_t array, excluding the terminal character.

Minimum: 40, Maximum (when using UTF-16BE): 55, Default: 40

3.1.3 Maximum Additional Information Character Array Length
(NJ_MAX_ADDITIONAL_LEN)

This defines the maximum string length for learnable additional information strings. It specifies the
number of elements in the wchar_t array, excluding the terminal character.

Minimum: 20, Maximum (when using UTF-16BE): 55, Default: 40

3.1.4 Maximum Number of Pieces of Additional Information that can be Mounted
(NJ_MAX_ADDITIONAL_INFO)

This defines the maximum number of pieces of additional information that can be set for a single
dictionary.

Minimum: 1, Maximum: 5, Default: 2

3.1.5 Maximum Number of Obtainable Candidates (NJ_MAX_CANDIDATE)
This defines the maximum number of obtainable candidates when getting all candidates or getting
prediction candidates.

Minimum: 100, Maximum: 500, Default: 300

CTR iWnn Programming Manual

 2011–2013 Nintendo 25 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

3.1.6 Maximum User Dictionary Word Registration String Length
(NJ_MAX_USER_LEN)

This defines the maximum string length for reading strings to be registered in the user dictionary.

It specifies the number of elements in the wchar_t array, excluding the terminal character.

Minimum: 20, Maximum: NJ_MAX_LEN, Default: 40

3.1.7 Maximum User Dictionary Word Registration Candidate String Length
(NJ_MAX_USER_CANDIDATE_LEN)

This defines the maximum string length for candidate strings to be registered in the user dictionary.

It specifies the number of elements in the wchar_t array, excluding the terminal character.

Minimum: 20, Maximum: NJ_MAX_RESULT_LEN, Default: 40

3.1.8 Maximum User Additional Information String Length
(NJ_MAX_USER_ADDITIONAL_LEN)

This defines the maximum string length for additional information strings that can be set in a user
dictionary that includes additional information.

It specifies the number of elements in the wchar_t array, excluding the terminal character.

Minimum: 20, Maximum: NJ_MAX_ADDITIONAL_LEN, Default: 40

3.1.9 Maximum Number of Registerable Words in a User Dictionary
(NJ_MAX_USER_COUNT)

This defines the maximum number of words that can be registered in a user dictionary.

Minimum: 10, Maximum: 255, Default: 100

3.1.10 Maximum Number of Mountable Dictionaries (NJ_MAX_DIC)
This defines the maximum number of dictionaries that can be specified in a dictionary set.

Although a value of up to 100 may be set for the maximum number of mountable dictionaries, note that
performance in terms of speed can be expected to go down as the number of dictionaries goes up.

Minimum: 4, Maximum: 100, Default: 20

3.1.11 Maximum Morphological Analysis String Length (MM_MAX_MORPHOLIZE_LEN)
This defines the maximum string length for the input string to undergo morphological analysis.

It specifies the number of elements in the wchar_t array, excluding the terminal character.

Minimum: 40, Maximum (when using UTF-16BE): 50, Default: 100

iWnn Programming Manual CTR

CTR-06-0160-001-D 26  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

3.1.12 Maximum Number of Same Reading Dictionary Lookups during Multiple
Phrase Conversion (NJ_MAX_GET_RESULTS)

This defines the maximum number of dictionary lookups to make during processing of the function for
multiple phrase conversion.

Although reducing this value can increase processing speed during multiple phrase conversion,
conversion precision is reduced.

Minimum: 5, Maximum: 32, Default: 32

3.1.13 Maximum Ancillary Word Parsing String Length when Getting All Candidates
(NJ_MAX_ANCILLARY_LEN)

This specifies how many words at the end of an input reading string to parse as an ancillary word,
during processing to get all candidates in the function for getting all candidates and the function for
prediction.

Although decreasing this value can increase the processing speed of getting all candidates, it may not
be possible to get some candidates in cases where the ancillary word part of the input string is too
long.

Minimum: 0, Maximum: NJ_MAX_LEN/2, Default: NJ_MAX_LEN/2

3.1.14 Maximum Number of Registerable Fuzzy Characters (NJ_MAX_CHARSET)
This defines the maximum number of registrations that can be specified for the fuzzy character set
(IWNN_CHARSET).

Minimum: 1, Maximum: 255, Default: 50

3.1.15 Maximum Cache Size (NJ_SEARCH_CACHE_SIZE)
This defines the maximum cache size that can be specified for a dictionary set.

Fuzzy prediction searches may become impossible, if this value is set too low when input strings are
long.

Minimum: 10, Maximum: 1000, Default: 50

3.1.16 String Terminator Size (NJ_TERM_SIZE)
Set a value of 1 for the size of the terminator for strings.

3.1.17 Maximum Number of Obtainable Candidates (NJ_MAX_CANDIDATE), Maximum
Length of Conversion Reading Strings (NJ_MAX_LEN)

Increasing the values set for the maximum morphological analysis string length
(MM_MAX_MORPHOLIZE_LEN) and the maximum conversion candidate string length
(NJ_MAX_RESULT_LEN) will increase the amount of (fixed-size) memory used by iWnn to store strings.

CTR iWnn Programming Manual

 2011–2013 Nintendo 27 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

3.2 Including Header Files
Be sure to include the following header file in all applications that use iWnn.

mw\iwnn\iwnnCTR.h

3.3 Access to Dictionary Files (OnMemory Version Only)
iWnn operates by deploying dictionary data to memory, but the following API functions access the
dictionary data files.

1. NjxGetFlashDicCacheSize

2. NjxSetFlashDicInfo

3. NjxCheckDic

Note: The NjxGetFlashDicCacheSize and NjxSetFlashDicInfo functions are used when
deploying integrated dictionaries to memory. Before calling these API functions, it is necessary
to set the dictionary data file handle to the IWNN_FILE structure.

There is no further access to the dictionary files after the API functions above are called, so
close the file handle.

iWnn Programming Manual CTR

CTR-06-0160-001-D 28  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

4 List of Used Structures and Functions
4.1 List of Structures

The following structures are used in the iWnn API.

4.1.1 Dictionary Sets (IWNN_DIC_SET, IWNN_DIC_INFO, IWNN_FLASH_DIC_INFO)
These specify the dictionaries to be used by iWnn.

4.1.2 Processing Result (IWNN_RESULT)
This stores the processing results of dictionary lookups, conversions, predictions, and morphological
analyses.

4.1.3 Dictionary Search Cursor (IWNN_CURSOR)
This specifies search conditions. Search results are stored by calling the word search function.

4.1.4 Word Information (IWNN_WORD_INFO)
This specifies the reading string, candidate string, and part of speech group to be registered in the user
dictionary,

4.1.5 Fuzzy Character Set (IWNN_CHARSET)
This specifies the fuzzy character pattern to be used to perform a fuzzy search.

4.1.6 Parsing Information Class (IWNN_CLASS)
This is a work area used by iWnn.

4.1.7 Option Settings (IWNN_OPTION)
This specifies operational parameters of iWnn.

4.1.8 Prediction Options (IWNN_ANALYZE_OPTION)
This specifies operational parameters to use during prediction and conversion.

4.1.9 State Settings (IWNN_STATE)
This sets the peripheral state required to perform situational applicable prediction.

4.1.10 Merge Candidates (IWNN_MERGE_RESULT)
This stores candidate list information where multiple process result strings have been merged.

CTR iWnn Programming Manual

 2011–2013 Nintendo 29 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

4.2 List of Functions
The following functions can be used with the iWnn API.

4.2.1 Initialization (NjxInit)
This initializes iWnn variables.

4.2.2 Get Reading String (NjxGetStroke)
This gets a reading string based on the processing result structure.

4.2.3 Get Candidate String (NjxGetCandidate)
This gets a candidate string based on the processing result structure.

4.2.4 Get Dictionary Handle (NjxGetDicHandle)
This gets a dictionary handle based on the processing result structure.

4.2.5 Create Dictionary Region (NjxCreateDic)
This writes header information into the user dictionary and learning region, and initializes the dictionary.

4.2.6 Check Dictionary (NjxCheckDic)
This checks dictionary integrity and performs automatic recovery.

4.2.7 Get Character Type (NjxGetCharType)
This determines the character type (hiragana, half-width/full-width katakana, half-width/full-width
numeric characters) for independent and ancillary words.

4.2.8 Change Dictionary Type (NjxChangeDicType)
This changes the dictionary type (header information) of learning dictionaries and uncompressed
customized dictionaries.

4.2.9 Get Prediction Candidate (NjxAnalyze)
This gets one candidate at a time from a list of candidates comprehensively evaluated in terms of
kana-kanji conversion of the reading string, all candidate processing, and history search.

4.2.10 Kana-kanji Conversion (NjxConversion)
This performs kana-kanji conversion (multiple phrase conversion or single phrase conversion) of a
reading string. Conversion where the locations of phrase delimiters are specified is also possible.

4.2.11 Get All Candidates (NjxAllCandidates)
This gets one candidate at a time from a list of candidates for the specified phrase.

iWnn Programming Manual CTR

CTR-06-0160-001-D 30  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

4.2.12 Learn (NjxSelect)
This learns the specified processing result structure.

4.2.13 Undo Learning (NjxUndo)
This deletes the information just learned.

4.2.14 Search Word (NjxSearchWord)
This searches the dictionary based on the specified reading string.

4.2.15 Get Word (NjxGetWord)
This gets one word at a time, based on single word search results.

4.2.16 Register Word (NjxAddWord)
This registers the specified word to a user dictionary or learning dictionary.

4.2.17 Delete Word (NjxDeleteWord)
This deletes a word from a user dictionary or learning dictionary, based on the result of getting a word.

4.2.18 Delimited Input (MmxSplitWord)
This performs morphological analysis on the specified string and splits it into multiple phrase units.

4.2.19 Get Part of Speech Group (MmxGetPartsOfSpeech)
This determines the part of a speech group: such as a noun group, a pseudo-group, and so forth.

4.2.20 Get Reading String for Morphological Analysis (MmxGetReading)
This gets one reading string at a time from a list of readings for a delimited phrase.

4.2.21 Learn by Morphological Analysis (MmxSelect)
This learns words and places them in the learning dictionary, so that morphological analysis results
can be re-used.

4.2.22 Set Options (NjxSetOption)
This sets iWnn operational parameters in the parsing information class (IWNN_CLASS).

4.2.23 Set State (NjxSetState)
This sets state parameters, for situational applicable prediction.

4.2.24 Get State Setting (NjxGetState)
This returns the current state setting parameter stored within iWnn.

CTR iWnn Programming Manual

 2011–2013 Nintendo 31 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

4.2.25 Get Word Information (NjxGetWordInfo)
This gets information for word registration from the processing result structure.

4.2.26 Get No Conversion Candidates (NjxGetStrokeWord)
This creates a phrase having the same notation as the reading.

4.2.27 Merge Candidate Lists (NjxMergeWordList)
This merges multiple candidate lists to form a single list.

4.2.28 Manage Learning Dictionary (NjxManageLearnDic)
This performs various types of management on the learning dictionary. It is used when merging
learning dictionaries.

4.2.29 Get Additional Information String (NjxGetAdditionalInfo)
This gets additional information strings from the processing result structure.

4.2.30 Check Additional Information Region (NjxCheckAdditionalInfo)
This checks if there is an additional information region for the dictionary handle.

4.2.31 Get FLASH Dictionary Cache Size (NjxGetFlashDicCacheSize)
This gets the cache size required by the FLASH dictionary.

4.2.32 Set FLASH Dictionary Information (NjxSetFlashDicInfo)
This sets the required information for the FLASH dictionary.

iWnn Programming Manual CTR

CTR-06-0160-001-D 32  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

5 Expiration Period and Applicable Scope of the
Process Result Structure

There is an expiration period in place for the processing result structure (IWNN_RESULT). Applications
cannot pass processing results that have exceeded their expiration period to iWnn functions.
Processing results are valid from the point they are obtained by an iWnn function until a function that
affects the learning dictionary or user dictionary is called. If a function that affects the learning
dictionary or user dictionary is called, all processing results obtained before that point are invalidated.
However, this restriction does not apply to multiple phrase conversion processing results obtained by
the NjxConversion function (processing results for multiple phrases for which parsing was possible).

Figure 5-1 Example of Timing for Getting Process Results

IWNN_RESULT-D

-C
IWNN_RESULT-C

IWNN_RESULT-B

-A
IWNN_RESULT-A

NjxAnalyze

NjxGetWord NjxSearchWord

NjxAnalyze
(secondary candidate)

NjxGetWord

IWNN_RESULT-A

NjxSelect

IWNN_RESULT-B

IWNN_RESULT-C IWNN_RESULT-D IWNN_RESULT-D

Figure 5-1 is an example of the timing for getting the processing result (IWNN_RESULT), when
searching the dictionary using the word search function (NjxSearchWord) and get word function
(NjxGetWord) in combination with the prediction function (NjxAnalyze). When the learning function
(NjxSelect) is used, the processing results expire and all processing results (IWNN_RESULT-A
through IWNN_RESULT-D) can no longer be used.

When processing results become invalid, they must be obtained again from the engine.

The following functions affect learning dictionaries and user dictionaries.

• Initialize function (NjxInit).
• Learn function (NjxSelect).
• Add word function (NjxAddWord).
• Delete word function (NjxDeleteWord).
• Undo learning function (NjxUndo).
• Create dictionary region function (NjxCreateDic).
• Change dictionary type function (NjxChangeDicType).
• Check dictionary function (NjxCheckDic).

CTR iWnn Programming Manual

 2011–2013 Nintendo 33 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

The expiration period for the processing result structure (IWNN_RESULT) is not checked by iWnn
functions, and must, therefore, be managed by applications.

5.1 Applicable Scope of the Processing Result Structure
The functions that can be used after processing results (IWNN_RESULT) have been obtained depend
on the function that obtained them.

Table 5-1 Applicable Scope of the Processing Result Structure

Function Getting
Processing Results Usable Functions Unusable Functions

NjxAnalyze

NjxGetStroke
NjxGetCandidate
NjxGetAdditionalInfo
NjxSelect
NjxGetDicHandle
NjxGetCharType
NjxDeleteWord

NjxAllCandidates
MmxGetPartsOfSpeech
MmxGetReading
MmxSelect

NjxConversion

NjxGetStroke
NjxGetCandidate
NjxGetAdditionalInfo
NjxSelect
NjxGetDicHandle
NjxAllCandidates
NjxGetCharType

NjxDeleteWord
MmxGetPartsOfSpeech
MmxGetReading
MmxSelect

NjxAllCandidates

NjxGetStroke
NjxGetCandidate
NjxGetAdditionalInfo
NjxSelect
NjxGetDicHandle
NjxAllCandidates
NjxGetCharType

NjxDeleteWord
MmxGetPartsOfSpeech
MmxGetReading
MmxSelect

NjxGetWord

NjxGetStroke
NjxGetCandidate
NjxGetAdditionalInfo
NjxSelect
NjxGetDicHandle
NjxDeleteWord
NjxGetCharType

NjxAllCandidates
MmxGetPartsOfSpeech
MmxGetReading
MmxSelect

MmxSplitWord

MmxGetPartsOfSpeech
MmxGetReading
MmxSelect
NjxGetCandidate
NjxGetAdditionalInfo
NjxGetDicHandle
NjxGetCharType

NjxDeleteWord
NjxAllCandidates
NjxGetStroke
NjxSelect

iWnn Programming Manual CTR

CTR-06-0160-001-D 34  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

6 Handling Strings
6.1 Definition of a String

Strings are declared as a wchar_t array. iWnn supports Unicode (UTF-16BE).

When using UTF-16BE, strings are handled as an unsigned short array.

Strings are terminated by 0x0000. Strings do not include a byte order mark (BOM).

For example, when specifying the reading “わたし” in UTF-16BE:

Table 6-1 wchar_t (unsigned short) Array

Array
Index

Value

Big-Endian
Environment

Little-Endian
Environment

0 0x308f 0x8f30

1 0x305f 0x5f30

2 0x3057 0x5730

3 0x0000 0x0000

6.2 Counting the Length of Strings
With iWnn, string length is counted in wchar_t units.

Unless otherwise specified, the string length is the same as the number of elements in the wchar_t
array.

When using UTF-16BE, wchar_t is defined as an unsigned short array, where every two bytes count
as a single character.

With UTF-16, characters included in UCS-2 are represented by two bytes, but some UCS-4 characters
not included in UCS-2 (U+10000 through U+10FFFF) are represented by four bytes (surrogate pairs).

With iWnn, the string length of characters represented by a surrogate pair is 2, and all other characters
are counted as 1.

6.3 Notes on Input Strings
The address of an input string specified to an iWnn function is used in processing results
(IWNN_RESULT). The memory in which input strings are stored must, therefore, continue to be
maintained until processing results (IWNN_RESULT) are no longer needed.

CTR iWnn Programming Manual

 2011–2013 Nintendo 35 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

6.4 Definitions of Hiragana, Katakana, and Numeric Characters
These definitions are used to determine the character type for functions that get character types.

The following full-width symbols are treated as auxiliary hiragana characters. Such “auxiliary
characters” are treated as hiragana characters, even if auxiliary symbols exist within full-width hiragana
text.

The same is true for full-width katakana text. However, text consisting entirely of auxiliary characters
cannot be identified as being either hiragana or katakana text.

(See the appendix for information on hiragana, katakana, and half-space kana characters.)

, 。 ， ． ？ ！ ゛ ゜ ー ～ ・ ＆ ＝

The following half-space symbols are treated as auxiliary characters for half-space kana. However, text
consisting entirely of auxiliary characters cannot be identified as half-space kana text.

, ｡ , . ? ! ﾞ ﾟ ｰ ～ ･ & = -

The following full-space symbols are treated as auxiliary characters for full-space numeric characters.
However, text consisting entirely of auxiliary characters cannot be identified as full-space numeric
character text. Furthermore, it cannot be identified as full-space numeric character text, even if
auxiliary characters come at the end of the full-space numeric characters.

， ．

The following half-space symbols are treated as auxiliary characters for half-space numeric characters.
However, text consisting entirely of auxiliary characters cannot be identified as half-space numeric
character text. Furthermore, it cannot be identified as half-space numeric character text, even if
auxiliary characters come at the end of the half-space numeric characters.

, .

iWnn Programming Manual CTR

CTR-06-0160-001-D 36  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

7 Operations Overview
This chapter describes the basic use of iWnn functions.

For settings and a detailed description, refer to Chapter 9 Detailed Descriptions of Functions.

The return values of iWnn functions have been standardized, so that a value greater than 0 indicates
normal termination and a negative value indicates an error. In the case of an error, the type of error can
be determined by the return value. For more information, refer to Chapter 10 Errors.

7.1 Startup
Create dictionaries, check dictionaries, and initialize variables, according to the procedure given below,
before executing morphological analyses, predictions, conversions, or dictionary lookups.

1. Create dictionary region function (NjxCreateDic).

2. Create a user dictionary and learning dictionary, when power is turned on the first time after
shipment from the factory.

Note: For a supplemental description of the timing at which dictionaries are created, refer to section
D.3 Creating Dictionaries.

This function initializes dictionaries based on the configured dictionary handle and size.

3. Check dictionary function (NjxCheckDic).
A dictionary check is performed on downloaded dictionaries and/or dictionaries loaded from a non-
volatile device. If the user dictionary and learning dictionary are destroyed, automatic recovery is
performed.

4. Configure a dictionary set.
Configure the dictionaries to be used in the dictionary set structure (IWNN_DIC_SET) in the parsing
information class (IWNN_CLASS). As for integrated dictionaries and no reading prediction
dictionaries that have additional information, be sure to execute the check additional information
region function (NjxCheckAdditionalInfo) before setting additional information.

5. Initialization function (NjxInit).
This function initializes the iWnn work area. Always call this function when changing the
configuration of a dictionary set.

6. Set options function (NjxSetOption).
This function sets iWnn operational parameters.

Note: This operation is unnecessary if using default settings.

CTR iWnn Programming Manual

 2011–2013 Nintendo 37 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Figure 7-1 Startup

Note: For a supplemental description of cold start and hot start, refer to section D.4 Cold Start/Hot
Start.

Perform initialization using the create dictionary region function when using a user dictionary or
learning dictionary region for the first time. If using a user dictionary or learning dictionary that has
already been created, the integrity of the dictionary is checked using the dictionary check function. If
there is an error, recovery is performed. If using a downloaded dictionary, the integrity of the dictionary
is checked using the check dictionary function after it is downloaded.

Note: Distinguishing between a FLASH Dictionary and a non-FLASH Dictionary

The process used to set information in the dictionary set structure (IWNN_DIC_SET) differs
depending on whether the dictionary in question is a FLASH or a non-FLASH type dictionary. If
the dictionary type is not already known, call the get FLASH dictionary cache size function
(NjxGetFlashDicCacheSize) and determine it to be a non-FLASH dictionary if
NJ_ERR_PARAM_TYPE_INVALID is returned. (If determined to be a FLASH dictionary, next call
the Set FLASH dictionary information function (NjxSetFlashDicInfo) and set information
required for a FLASH dictionary in the FLASH dictionary information structure.)

iWnn Programming Manual CTR

CTR-06-0160-001-D 38  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Note: For information on the significance of FLASH and non-FLASH dictionaries, refer to section D.5
FLASH Dictionaries/Non- FLASH Dictionaries.

7.2 From Getting Prediction Candidates to Learning
Perform operations from getting prediction candidates to learning according to the procedure given
below.

1. Get prediction candidate information function (NjxAnalyze).
Get prediction candidates from the reading.
Obtained prediction candidates are stored in the processing result structure (IWNN_RESULT).
Because this function returns results one at a time, you can get as many candidates as required by
repeatedly calling this function while checking the return value.
To get a candidate string from obtained results (IWNN_RESULT), use the get candidate string
function (NjxGetCandidate).

2. Learn function (NjxSelect).
Specify the processing result (IWNN_RESULT) obtained by the get prediction candidate function, to
learn the stored information.

3. Set state function (NjxGetState/NjxSetState).
Access the state setting value updated internally by iWnn, and update to the appropriate setting
value.
If the learn function has been called, iWnn adds 1 to the state setting value of attributes that have a
confirmed candidate.
The application must reset the state setting by referring to the difference in state setting values.

CTR iWnn Programming Manual

 2011–2013 Nintendo 39 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Figure 7-2 Learning From Obtained Prediction Candidates

Get prediction candidate
NjxAnalyze

Learn
NjxSelect

Specify the IWNN_RESULT structure
corresponding to the confirmed word.

[End candidate acquisition]

IWNN_RESULT

Display Candidate
Get Candidate String
NjxGetCandidate

 Prediction Conversion

Confirm Candidate

IWNN_RESULT

[Get next candidate]

The required number
of candidates

 are repeatedly retrieved.

Get connection prediction candidate.

Update state setting
NjxGetState

 NjxSetState

To use the fuzzy prediction feature, you must first set the fuzzy character set (IWNN_CHARSET) and the
cache management region for the dictionary that will undergo fuzzy prediction search.

iWnn Programming Manual CTR

CTR-06-0160-001-D 40  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

7.3 From Multiple Phrase Conversion to Learning
Operations from multiple phrase conversion until learning are performed according to the following
procedure. (The same is true for single phrase conversion.)

1. Kana-kanji conversion function (NjxConversion).
Get the result of multiple phrase conversion of the specified reading string.
Conversion results are stored in an array of processing result structures (IWNN_RESULT).
When the user changes the location of any delimiters in the conversion, specify the delimiter location
and call this function again. In the case of single phrase conversion, specify the delimiter position for
the first phrase as the end of the text and call this function.
The candidate string of the processing result can be obtained using the get candidate string function.

2. Get all candidates function (NjxAllCandidates)
Specify the processing result structure (IWNN_RESULT) for the first phrase obtained by the kana-
kanji conversion function and get words having the same sounding but different notation.
The candidate is stored in the processing result structure (IWNN_RESULT). Because this function
returns candidates one at a time, you can get as many candidates as required by repeatedly calling
this function while checking the return value.
The candidate string of the processing result can be obtained using the get candidate string function.

3. Learn function (NjxSelect)
Specify the processing result (IWNN_RESULT) obtained by the get all candidates function, to perform
learning.
If multiple phrase conversion has been performed, processing results (IWNN_RESULT) for multiple
phrases are learned in phrase order.

4. Set state function (NjxGetState/NjxSetState)
Access the state setting value updated internally by iWnn, and update to the appropriate setting
value.
When the learn function has been called, iWnn adds 1 to the state setting value of attributes that
have a confirmed candidate.
The application must reset the state setting by referring to the difference in state setting values.

CTR iWnn Programming Manual

 2011–2013 Nintendo 41 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Figure 7-3 From Multiple Phrase Conversion to Learning

7.4 No Conversion Confirmation
Cases in which characters input from the keyboard are directly confirmed and then learned, without
selecting a conversion candidate, are handled according to the following procedure.

1. Get no conversion candidate function (NjxGetStrokeWord).
A reading string is specified and a single phrase candidate having the same notation as the reading
string is obtained.

iWnn Programming Manual CTR

CTR-06-0160-001-D 42  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

2. Learn function (NjxSelect).
Learn the results (IWNN_RESULT) obtained from the get no conversion candidate process.

3. Set state function (NjxGetState/NjxSetState).
Access the state setting value updated internally by iWnn, and update to the appropriate setting
value.
If the learn function has been called, iWnn adds 1 to the state setting value of attributes that have a
confirmed candidate.
The application must reset the state setting by referring to the difference in state setting values.
The appropriate part of speech information can be obtained for directly confirmed strings by
executing a get no conversion candidate process. This allows you to obtain more appropriate
connection candidates when getting connection prediction candidates for the immediately following
phrase.

Figure 7-4 Confirming No Conversion

Get no conversion candidate
NjxGetStrokeWord

Learn
NjxSelect

No conversion confirmation

IWNN _RESULT

Update state setting
NjxGetState
NjxSetState

7.5 Search Registered Words in Dictionary and Get List
Operations for searching for words registered in a user or learning dictionary and getting a list, are
performed according to the procedure given below.

1. Search word function (NjxSearchWord).
Set search conditions in both the dictionary search cursor structure (IWNN_CURSOR) and the
dictionary set structure (IWNN_DIC_SET), and search for words.
Search results are stored in the specified dictionary search cursor structure (IWNN_CURSOR).

2. Get word function (NjxGetWord).

CTR iWnn Programming Manual

 2011–2013 Nintendo 43 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Specify the dictionary search cursor structure (IWNN_CURSOR) obtained using the search word
function and get candidates. Processing results (candidates) are stored in the processing result
structure (IWNN_RESULT).
The reading string for the obtained result can be obtained using the get reading string function
(NjxGetStroke). The candidate string can be obtained using the get candidate string function
(NjxGetCandidate).

Figure 7-5 Searching for Registered Words in the Dictionary and Getting a List

Sometimes the same word is registered in the learning dictionary more than once. When using the get
word function, these words will be retrieved separately. So be sure your application handles this by
gathering duplicate words together, as necessary.

Note: When the content of the learning dictionary or user dictionary has changed, the content of the
search result dictionary search cursor structure (IWNN_CURSOR) and the processing results
(IWNN_RESULT) of the get word function will become invalid. Be careful not to write to the
learning dictionary or user dictionary during search operations.

iWnn Programming Manual CTR

CTR-06-0160-001-D 44  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

7.6 User Dictionary/Learning Dictionary Initialization
Initialization of the user dictionary and learning dictionary region is performed according the procedure
given below.

1. Create dictionary region function (NjxCreateDic).
Initializes the user dictionary or learning dictionary region.

Figure 7-6 User Dictionary/Learning Dictionary Initialization

NjxCreateDic

 User dictionary initialization

Learning dictionary initialization

Create dictionary region

7.7 Registering Words to the User Dictionary/Learning Dictionary
Operations for registering words to the user dictionary/learning dictionary are performed according to
the procedure given below.

1. Register word function (NjxAddWord).
With a user dictionary/learning dictionary handle set in the dictionary set structure (IWNN_DIC_SET),
words are registered by specifying a reading string, candidate string, part of speech group, and
connection flag in the word registration information structure (IWNN_WORD_INFO). Be sure to specify
an additional information string as well, if the user dictionary/learning dictionary includes additional
information.
Specify a user dictionary or learning dictionary for the type of dictionary to be registered to. If a user
dictionary and learning dictionary have both been specified in the dictionary set, words registered to
the user dictionary will be automatically registered to the learning dictionary, as well.

Figure 7-7 Registering Words to the User Dictionary/Learning Dictionary

Register word
NjxAddWord

Register word

IWNN_WORD_INFO

CTR iWnn Programming Manual

 2011–2013 Nintendo 45 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

7.8 Deleting Words from the User Dictionary/Learning Dictionary
Operations for deleting words from the user dictionary and learning dictionary are performed as
described below.

Duplicates of the same word may be registered in the learning dictionary. It is, therefore, necessary to
repeatedly search and delete until all instances of the word to be deleted are gone.

If deleting all registered words, this can be achieved faster by using the create dictionary region
function to initialize the dictionary.

1. Search word function (NjxSearchWord).
A complete match search is made of the dictionary, using the reading string of the word to be
deleted.

2. Get word function (NjxGetWord).
Get the candidate by specifying the dictionary search cursor structure (IWNN_CURSOR) obtained by
the search word function. The candidate string obtained using the get candidate string function
(NjxGetCandidate) is checked to see if the word should be deleted.

3. Delete word function (NjxDeleteWord).
Get the word by specifying the processing result structure (IWNN_RESULT), obtained by the get
word function, and delete the word.

Figure 7-8 Deleting Words from the User Dictionary/Learning Dictionary

Get word
NjxGetWord

Delete word

Search word
NjxSearchWord

Delete registered word
NjxDeleteWord

Complete match search using the reading

[Other candidates still remain] [No other candidates]

[Candidate
string
mismatch]

[Candidate string match]

iWnn Programming Manual CTR

CTR-06-0160-001-D 46  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

7.9 Undo Learning
Operations for restoring the learning dictionary to the state before learning, when candidate
confirmation has been undone, are performed according to the procedure given below.

To restore the learning dictionary to the state immediately before a learning operation, you must
specify the number of times the learn function (NjxSelect) has been called to undo the learning
function.

For example, when the three phrases “今日は”, “医者に”, “行く” have been learned:

 今日は 医者に 行く

First undo learning
Second undo learning

Third undo learning

1. Undo learning function (NjxUndo).
Set the number of undo’s and restore the learning dictionary to the state before learning.

Figure 7-9 Undo Learning

Undo learning
NjxUndo

Undo candidate confirmation

7.10 Creating a Distributable Dictionary on a Terminal
To create a distributable dictionary on a terminal, first create a learning dictionary and register words to
it, and then perform operations to convert the learning dictionary to a distributable dictionary format.

1. Create dictionary region function (NjxCreateDic).
This allocates memory for the distributable dictionary and initializes it as a learning dictionary.

2. Edit dictionary.
Edit the contents of the created learning dictionary, using the register word function (NjxAddWord)
and delete word function (NjxDeleteWord).

3. Change dictionary type function (NjxChangeDicType).
Change the dictionary type to an uncompressed customized dictionary (distributable dictionary). A
distributable dictionary created using this function can be restored to a learning dictionary format.

CTR iWnn Programming Manual

 2011–2013 Nintendo 47 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Figure 7-10 Creating a Distributable Dictionary on a Terminal

Create dictionary region
NjxCreateDic

Create distributable dictionary

Edit dictionary

Change dictionary type
NjxChangeDicType

Edit the dictionary using
operations by registering
words, searching words, and
deleting words, and so forth.

7.11 Morphological Analysis (Delimited Input)
To split a sentence into phrases (delimited input), follow the procedure given below.

For example, when “今日は医者に行く” is converted to delimited input, the result is:

 “今日は” “医者に” “行く”.

1. Delimited input function (MmxSplitWord).
With the dictionary to be used for morphological analysis registered in IWNN_DIC_SET, specify the
sentence to be parsed and call the delimited input function (MmxSplitWord).
The results of delimiting are stored in an array of processing result structures (IWNN_RESULT).

Figure 7-11 Morphological Analysis (Delimited Input)

Delimited Input

Delimited Input
MmxSplitWord

IWNN_RESULT[]

Depending on the phrase, there may be more than one possible reading. (For example, 今日 may

become きょう or こんにち.)

Therefore, use the get reading string by using the morphological analysis function (MmxGetReading)
to get readings from the processing result (IWNN_RESULT), obtained by the delimited input function.
Note that the get reading string function (NjxGetStroke) cannot be used.

Use the get candidate string function (NjxGetCandidate) to get the notational string for the phrase.

Use the get additional information function (NjxGetAdditonalInfo) to get the additional information
string for the phrase.

iWnn Programming Manual CTR

CTR-06-0160-001-D 48  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

7.12 Automatic Learning When Replying to E-mail (Learning
Morphological Analysis Results)

Note: For more information on using this feature, refer to section D.6 Automatic Learning When
Replying to E-mail.

When replying to e-mail, you can predict and convert words while prioritizing words included in the
received e-mail, by learning through morphological analysis of the text in the received e-mail
(automatic learning when replying to e-mail). Because the probability of using words included in the
received e-mail is relatively high when replying to an e-mail, usefulness when creating the reply is
improved.

Automatic learning when replying is performed according to the procedure given below.

1. Delimited input function (MmxSplitWord).
The text of the received e-mail being replied to undergoes morphological analysis.

A dictionary set (IWNN_DIC_SET) is prepared ahead of time, to include a dictionary for
morphological analysis and a learning dictionary for automatic learning when replying. The text of
the received e-mail is then parsed using this dictionary set.
Because there is a limit on the string length that can be parsed at one time, the entire text is split
multiple times and parsed.

2. Select morphological analysis candidates.
Candidates to be used for learning are selected as necessary from the processing result
(IWNN_RESULT), obtained by the delimited input function (MmxSplitWord).
You can do things like: learning only a particular part of speech (for example, learning only
uninflected words) by using the get part of speech group function (MmxGetPartsOfSpeech), or
learning only a particular character type (for example, learning only katakana words) by using the
get character type function (NjxGetCharType).

3. Get word registration information function (NjxGetWordInfo).
Word information to be learned (IWNN_WORD_INFO) is obtained from the morphological analysis
processing result (IWNN_RESULT). Depending on the word, there may be more than one reading,
but the first candidate will be used.

4. Register word function (NjxAddWord).
Word registration information (IWNN_WORD_INFO), obtained using the dictionary set for
automatically learning when replying, is registered in the automatic learning dictionary when
replying.

5. Set a dictionary set for prediction/kana-kanji conversion.
The dictionary for automatic learning when creating a reply is set in the dictionary set used for
prediction/kana-kanji conversion.
Using the learn function (NjxSelect), confirmed candidates are registered in a dictionary having a
learning dictionary format configured beforehand, in the order mounted in the dictionary set. For this
reason, be sure to set the dictionary for automatic learning when replying after using normal learning
dictionaries.

CTR iWnn Programming Manual

 2011–2013 Nintendo 49 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

6. Initialization function (NjxInit).
Along with changes to the content of the dictionary set for prediction/kana-kanji conversion, the
parsing information class (IWNN_CLASS) is initialized.

Figure 7-12 Automatic Learning When Replying to E-mail (Learning Morphological Analysis
Results)

Delimited Input

MmxSplitWord

Create reply e-mail

Select morphological analysis candidate

Get word registration information

NjxGetWordInfo

Register word

NjxAddWord

Add to dictionary set for
prediction/kana-kanji

conversion

Initialization

NjxInit

Automatic learning dictionary when replying to e-mail

Repeat as many times as necessary

[End parsing of full e-mail text]

[Unparsed parts remain]

Perform as necessary

Use a dictionary
set for automatic

learning when
replying to e-mail

Initialize the parsing information class
(IWNN_CLASS) used to set the
dictionary set (IWNN_DIC_SET) for
prediction/kana -kanji conversion to
complete preparations for text input.

To create an automatic learning dictionary when replying, you can also use the get morphological
analysis reading string function (MmxGetReading) and learn using the morphological analysis function
(MmxSelect), instead of using the get word registration information function and register word
function.

iWnn Programming Manual CTR

CTR-06-0160-001-D 50  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

8 Detailed Description of Structures
8.1 Parsing Information Class (IWNN_CLASS)

The parsing information class structure stores variables used by iWnn in the conversion and parsing
processes.

The dictionary to be used can be changed by configuring a dictionary set to be included in this
structure.

For information on configuring a dictionary set, refer to section 8.2 Dictionary Sets (IWNN_DIC_SET,
IWNN_DIC_INFO, and IWNN_FLASH_DIC_INFO).

Memory other than that for the dictionary set is initialized using the initialization function (NjxInit).

Code 8-1 Parsing Class (IWNN_CLASS) Structure Configuration

struct IWNN_CLASS {

 ･･･

 IWNN_DIC_SET dicSet; // Dictionary set

 ･･･

};

8.2 Dictionary Sets (IWNN_DIC_SET, IWNN_DIC_INFO, and
IWNN_FLASH_DIC_INFO)

The dictionary set structure specifies the set of dictionaries to be subjected to each process when
dictionary lookups, conversions, predictions, or morphological analyses using iWnn are requested.
Settings for each dictionary are defined in the IWNN_DIC_INFO structure. The set of dictionaries to be
used is defined in IWNN_DIC_SET.

Code 8-2 Dictionary Set (IWNN_DIC_SET, IWNN_DIC_INFO, and IWNN_FLASH_DIC_INFO)
Structure Configuration
struct IWNN_FLASH_DIC_INFO {

 u32 dicType; // Internal use

 u32 dicSize; // Internal use

 u32 mode; // Internal use

 IWNN_FILE* fileStream; // Internal use

 void* cacheArea[NJ_FLASH_DIC_CACHE_MAX]; // Internal use

 void* extensionData; // Internal use

};

struct IWNN_DIC_INFO {

 u8 type; // Dictionary type

 u8 limit; // Search limit

CTR iWnn Programming Manual

 2011–2013 Nintendo 51 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

 IWNN_DIC_HANDLE handle; // Dictionary handle

 void* extensionArea; // Pseudo-dictionary work area

 void* addInfo[NJ_MAX_ADDITIONAL_INFO]; // Additional information region

 struct {

 u16 base; // Base frequency by dictionary handle

 u16 high; // Maximum frequency by dictionary handle

 } dicFrequency[NJ_MODE_TYPE_MAX];

 NJ_SEARCH_CACHE* searchCache; // Cache management region

};

struct IWNN_DIC_SET {

 IWNN_DIC_INFO dic[NJ_MAX_DIC]; // Dictionary information

 IWNN_DIC_HANDLE ruleHandle[NJ_MODE_TYPE_MAX];

 // Rule dictionary handle

 u16 mode; // Internal use

 wchar_t keyword[NJ_MAX_KEYWORD]; // Internal use

};

The IWNN_DIC_INFO structure is used to set a pointer (handle) to the dictionary itself and the
frequency range (dicFrequency). A separate frequency range is set for conversion
(NJ_MODE_TYPE_CONVERSION), prediction (NJ_MODE_TYPE_PREDICTION), and morphological
analysis (NJ_MODE_TYPE_MORPHOLIZE). A pointer (searchCache) to the cache region must be
specified for dictionaries subjected to fuzzy searches.

However, the rule dictionary is an exception. Directly set a pointer to the dictionary using
IWNN_DIC_SET.ruleHandle[]. Set a rule dictionary for each conversion, prediction, and
morphological analysis operation.

For the FLASH dictionary (target: integrated dictionary), instead of setting a pointer (handle) to the
dictionary structure, set all required information in the IWNN_FLASH_DIC_INFO structure, and then set
a start pointer to the IWNN_FLASH_DIC_INFO structure.

Because functions for prediction, morphological analysis, conversion, and dictionary lookup search
dictionaries in the order registered in IWNN_DIC_SET, if homonym candidates having the same
frequency occur in more than one dictionary, the order of registration in the structure will become the
order of candidates.

iWnn Programming Manual CTR

CTR-06-0160-001-D 52  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 8-1 IWNN_DIC_SET Structure Members

Member Description

IWNN_DIC_INFO
dic

Dictionary information other than for a rule dictionary.
Set dic[].handle = NULL for unused areas.

IWNN_DIC_HANDLE
ruleHandle

Dictionary handle for the rule dictionary.
This must be specified.

Table 8-2 IWNN_DIC_INFO Structure Members

Member Description

u8
type

Dictionary type.
Used to distinguish between normal dictionaries and pseudo-dictionaries and
identify the type of pseudo-dictionaries.
IWNN_DIC_HANDLE_TYPE_NRM: Normal dictionary.
IWNN_DIC_HANDLE_TYPE_PROGRAM: Pseudo-dictionary.
IWNN_DIC_HANDLE_TYPE_PROGRAM_ANCILLARY: Pseudo-dictionary (ancillary
words).
IWNN_DIC_HANDLE_TYPE_ON_FLASH: FLASH dictionary.

u8
limit

Search limit by dictionary handle.
Sets the length of the input string to start prediction search.
Specified as a number of characters under typical usage.
Setting range: From 0 to NJ_MAX_LEN+1 (0 to infinity).
Set to NJ_MAX_LEN+1 when not being used.

IWNN_DIC_HANDLE
handle

Dictionary handle.
Set to NULL for unused regions.

void*
extensionArea

Used as the work area for the pseudo-dictionary.
Allocate memory of the size required by each pseudo-dictionary.

void*
addInfo[]

Additional information region.
Sets additional information in the dictionary. This member can be used to set
additional information for integrated dictionaries and no reading prediction
dictionaries. Specify NULL for all elements in the case of other dictionaries.
Additional information can be set only for the number of array elements. Set NULL
in elements that do not store additional information.
Only when learnable additional information has been set in the 0th element is that
additional information the target of learning (capable of being learned). (However,
if the additional information is longer than NJ_MAX_ADDITIONAL_LEN, it is not
the target of learning.) Additional information set in an element other than the 0th
and additional information that cannot be learned is not the target of learning
(cannot be learned) by the learning dictionary.

u16
dicFrequency.base

Base frequency by dictionary handle.
This value is added to the frequency value by word in the dictionary, and used as
the default frequency for words.
Setting range: 0 to 1000.

CTR iWnn Programming Manual

 2011–2013 Nintendo 53 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Member Description

u16
dicFrequency.high

Maximum frequency by dictionary handle.
This value is used as the default frequency if the default frequency during
dictionary lookup is greater than or equal to this value.
Setting range: 0 to 1000.
Set a value equal to or greater than the base frequency using dictionary handle.

NJ_SEARCH_CACHE*
searchCache

Cache management region by dictionary handle.
Allocate and configure memory for cache management (NJ_SEARCH_CACHE) for
dictionaries that will undergo fuzzy prediction searches.
Set to NULL for unused regions.
The following dictionaries can undergo fuzzy prediction search.
• Integrated dictionary
• User dictionary
• Customized dictionary
• Learning dictionary

IWNN_FLASH_DIC_INFO Structure Members

Members of this structure are all set using the API.

The cache size required by the FLASH dictionary can be obtained using the function for getting the
FLASH dictionary cache size (NjxGetFlashDicCacheSize). Allocate the memory size required.
After allocation, use the function for setting FLASH dictionary information (NjxSetFlashDicInfo) to
set the information needed for the FLASH dictionary to this structure.

8.3 Dictionary Frequency Value Settings
These settings allow you to specify the priority relationship among dictionaries according to a
dictionary frequency value.

Dictionary frequency values are set as a pair of values representing base frequency and high
frequency. iWnn handles the priority of stored words within a specified frequency range.

In addition, dictionary frequency values can be set separately for normal conversion (kana-kanji
conversion and get all candidates), prediction conversion, and morphological analysis.

iWnn Programming Manual CTR

CTR-06-0160-001-D 54  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Figure 8-1 Dictionary Frequency Setting Example

In the example shown in Figure 8-1, words stored in Dictionary C are always prioritized above words
stored in Dictionary A. In addition, by overlapping setting ranges as shown for Dictionary A and
Dictionary B, you can prioritize only those words stored in Dictionary B that have a higher priority than
words in Dictionary A. If the setting ranges for two dictionaries are the same, as shown for Dictionary C
and Dictionary D, priority is determined based solely on the frequency value information stored for
each word.

However, depending on the state setting during connection prediction and situational adaptive
prediction, the priority of a word may be changed because it lies outside the setting range of its
dictionary.

8.3.1 Limitations on Base Frequency/Maximum Frequency by Dictionary Handle
Specify the base frequency and maximum frequency by dictionary handle in the range from 0 to 1000.

If the base frequency is greater than the maximum frequency, that dictionary will not be used.

Using a word search function with this setting results in an error.

CTR iWnn Programming Manual

 2011–2013 Nintendo 55 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

8.3.2 Recommended Values When Using Multiple Customized Dictionaries

Table 8-3 Recommended Values When Using Multiple Customized Dictionaries

Dictionary
Type

Fuzzy
Search

For Conversion For Prediction For Morphological
Analysis

Base Maximum Base Maximum Base Maximum

Learning
Dictionary Yes 501 1000 501 1000 10 0

Integrated
Dictionary Yes 400 550 100 560 400 500

Customized
Dictionaries
(multiple)

Yes 0 to 400 0 to 400 0 to 400 0 to 400 10 0

User Dictionary No 410 410 10 0 10 0

Single Kanji
Dictionary No 0 10 10 0 0 10

Ancillary Word
Dictionary No 400 500 10 0 400 500

No Reading
Prediction
Dictionary

No 10 0 100 244 10 0

Because there are so many words in the integrated dictionary, many words will be assigned to each
possible frequency. A broad frequency range from 0 to 400 is assigned to the customized dictionary so
that more words appear in the candidate list than other customized dictionaries.

For dictionaries not used in any particular mode, set a base frequency of 10 and a maximum frequency
of 0 (base frequency greater than the maximum frequency) to exclude them from use.

iWnn Programming Manual CTR

CTR-06-0160-001-D 56  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

8.3.3 Recommended Values When Using a No Reading Prediction Dictionary (Start
of Text)

Table 8-4 Recommended Values When Using a No Reading Prediction Dictionary (Start of
Text)

Dictionary
Type

Fuzzy
Search

For Conversion For Prediction For Morphological
Analysis

Base Maximum Base Maximum Base Maximum

Learning
Dictionary Yes 501 1000 501 1000 10 0

Integrated
Dictionary Yes 400 550 100 560 400 500

Customized
Dictionaries
(multiple)

Yes 0 to 400 0 to 400 0 to 400 0 to 400 10 0

User Dictionary No 410 410 10 0 10 0

Single Kanji
Dictionary No 0 10 10 0 0 10

Ancillary Word
Dictionary No 400 500 10 0 400 500

No Reading
Prediction
Dictionary

No 10 0 100 244 10 0

No Reading
Prediction
Dictionary
<start of text >

No 10 0 100
900

10 0

CTR iWnn Programming Manual

 2011–2013 Nintendo 57 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

8.3.4 Recommended Values When Using Learning Results Based on
Morphological Analysis

Table 8-5 When Prioritizing Morphological Analysis Results

Dictionary
Type

Fuzzy
Search

For Conversion For Prediction For Morphological
Analysis

Base Maximum Base Maximum Base Maximum

Morphological
Learning
Dictionary

Yes 900 1000 900 1000 10 0

Learning
Dictionary Yes 501 1000 501 1000 10 0

Integrated
Dictionary Yes 400 550 100 560 400 500

User Dictionary No 410 410 10 0 10 0

Single Kanji
Dictionary No 0 10 10 0 0 10

Ancillary Word
Dictionary No 400 500 10 0 400 500

No Reading
Prediction
Dictionary

No 10 0 100 244 10 0

iWnn Programming Manual CTR

CTR-06-0160-001-D 58  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 8-6 When Prioritizing the Learning Dictionary

Dictionary
Type

Fuzzy
Search

For Conversion For Prediction For Morphological
Analysis

Base Maximum Base Maximum Base Maximum

Learning
Dictionary Yes 501 1000 501 1000 10 0

Morphological
Learning
Dictionary

Yes 700 800 700 800 10 0

Integrated
Dictionary Yes 400 550 100 560 400 500

User Dictionary No 410 410 10 0 10 0

Single Kanji
Dictionary No 0 10 10 0 0 10

Ancillary Word
Dictionary No 400 500 10 0 400 500

No Reading
Prediction
Dictionary

No 10 0 100 244 10 0

If we assume morphological analysis of about 100 words parsed for learning information of
approximately 1000 words in a 32KB learning dictionary, a discrepancy will arise in the number of
words per frequency. Therefore, we specify a wider range of frequencies, as illustrated above, to
average out priorities and the number of words obtained.

8.3.5 Definition of the Standard Dictionary Frequency Value
The following macros have been defined based on recommended values for the standard dictionary
frequency value.

CTR iWnn Programming Manual

 2011–2013 Nintendo 59 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 8-7 Standard Dictionary Frequency Value Definitions

Dictionary Use Macro

Integrated
Dictionary

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_UNION_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_UNION_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_UNION_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_UNION_PREDICTION_BASE

Morphological
Analysis

Maximum NJ_DEFAULT_FREQUENCY_DIC_UNION_MORPHOLIZE_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_UNION_MORPHOLIZE_BASE

Single Kanji
Dictionary

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_SINGLE_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_SINGLE_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_SINGLE_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_SINGLE_PREDICTION_BASE

Morphological
Analysis

Maximum NJ_DEFAULT_FREQUENCY_DIC_SINGLE_MORPHOLIZE_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_SINGLE_MORPHOLIZE_BASE

Ancillary
Word
Dictionary

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_ANCILLARY_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_ANCILLARY_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_ANCILLARY_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_ANCILLARY_PREDICTION_BASE

Morphological
Analysis

Maximum NJ_DEFAULT_FREQUENCY_DIC_ANCILLARY_MORPHOLIZE_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_ANCILLARY_MORPHOLIZE_BASE

No Reading
Prediction
Dictionary

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_READING_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_READING_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_READING_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_READING_PREDICTION_BASE

Morphological
Analysis

Maximum NJ_DEFAULT_FREQUENCY_DIC_READING_MORPHOLIZE_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_READING_MORPHOLIZE_BASE

No Reading
Prediction
Dictionary
(start of
text)

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_HEAD_READING_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_HEAD_READING_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_HEAD_READING_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_HEAD_READING_PREDICTION_BASE

Morphological Maximum NJ_DEFAULT_FREQUENCY_DIC_HEAD_READING_MORPHOLIZE_HIGH

iWnn Programming Manual CTR

CTR-06-0160-001-D 60  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Dictionary Use Macro

Analysis Base NJ_DEFAULT_FREQUENCY_DIC_HEAD_READING_MORPHOLIZE_BASE

User
Dictionary

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_USER_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_USER_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_USER_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_USER_PREDICTION_BASE

Morphological
Analysis

Maximum NJ_DEFAULT_FREQUENCY_DIC_USER_MORPHOLIZE_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_USER_MORPHOLIZE_BASE

Learning
Dictionary

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_LEARN_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_LEARN_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_LEARN_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_LEARN_PREDICTION_BASE

Morphological
Analysis

Maximum NJ_DEFAULT_FREQUENCY_DIC_LEARN_MORPHOLIZE_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_LEARN_MORPHOLIZE_BASE

Customized
Dictionary

Conversion
Maximum NJ_DEFAULT_FREQUENCY_DIC_CUSTOM_CONVERSION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_CUSTOM_CONVERSION_BASE

Prediction
Maximum NJ_DEFAULT_FREQUENCY_DIC_CUSTOM_PREDICTION_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_CUSTOM_PREDICTION_BASE

Morphological
Analysis

Maximum NJ_DEFAULT_FREQUENCY_DIC_CUSTOM_MORPHOLIZE_HIGH

Base NJ_DEFAULT_FREQUENCY_DIC_CUSTOM_MORPHOLIZE_BASE

8.4 Processing Results (IWNN_RESULT)
The processing result structure stores processing results when dictionary lookups, conversions, or
predictions using iWnn have been requested. Do not directly access or modify information stored in
this structure.

Reading strings resulting from processing are obtained using the NjxGetStroke function, candidate
strings resulting from processing are obtained using the NjxGetCandidate function, and the
dictionary to retrieve them from is obtained using the NjxGetDicHandle function.

Code 8-3 Processing Result (IWNN_RESULT) Structure Configuration

struct IWNN_RESULT {

 u16 operationId; // Operation information

 struct IWNN_WORD word; // Member used for internal processing

};

CTR iWnn Programming Manual

 2011–2013 Nintendo 61 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 8-8 Structure Members

Member Description

u16
Operation ID

Operation information.
Every 4 bits, stores information for operation, feature, word information, and
dictionary type.

struct
IWNN_WORD
Word

Variable used for internal processing.
This variable cannot be accessed from outside the API.

Table 8-9 Operation Information

Category Type Description

Operation

NJ_OPERATION_SEARCH Dictionary Lookup Processing Result.

NJ_OPERATION_CONVERT Conversion processing result.

NJ_OPERATION_ANALYZE Evaluation (prediction) processing result.

NJ_OPERATION_MORPHOLIZE Morphological analysis processing result.

NJ_OPERATION_ENVIRONMENT Common processing result.

Feature

NJ_FUNC_SEARCH
NJ_FUNC_RELATION

Dictionary lookup features.

NJ_FUNC_SEARCH_REVERSE Dictionary lookup feature (reverse).

NJ_FUNC_CONVERT_MULTIPLE Multiple phrase (multiple phrase) conversion
feature.

NJ_FUNC_CONVERT_SINGLE Multiple phrase (single phrase) conversion
feature.

NJ_FUNC_ALL_CANDIDATES Single phrase conversion (all candidates) feature.

NJ_FUNC_NEXT No reading prediction feature.

NJ_FUNC_SPLIT_WORD Delimited input feature.

Word
Information

The high order 1 bit (NJ_TYPE_PSEUDO_BIT) is the pseudo-candidate bit.
If this bit is set, it indicates a pseudo-candidate.

Dictionary Type

NJ_DIC_PSEUDO Generated by iWnn system (no target dictionary).

NJ_DIC_CUSTOMIZE Customized dictionary.

NJ_DIC_LEARN Learning dictionary.

NJ_DIC_USER User dictionary.

NJ_DIC_STATIC Standard dictionary other than the above.

NJ_DIC_PROGRAM Pseudo-dictionary.

iWnn Programming Manual CTR

CTR-06-0160-001-D 62  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

8.5 Dictionary Search Cursor (IWNN_CURSOR)
When searching for words, the dictionary set, search string, internal dictionary search position
(IWNN_SEARCH_LOCATION_SET), and search conditions (IWNN_SEARCH_CONDITION) are set in the
dictionary search cursor structure, and a word search function is used to execute a search.

Word location information resulting from search is stored in the search cursor structure for the same
dictionary. However, internal information and the IWNN_SEARCH_LOCATION_SET structure must not
be directly accessed or changed by the application.

Code 8-4 Dictionary Search Cursor (IWNN_CURSOR) Structure Configuration

struct IWNN_CURSOR {

 struct IWNN_SEARCH_CONDITION condition;

 struct IWNN_SEARCH_LOCATION_SET locationSet[NJ_MAX_DIC];

};

Code 8-5 Search Condition (IWNN_SEARCH_CONDITION) Structure Configuration

struct IWNN_SEARCH_CONDITION {

 u8 operation; // Search method

 u8 mode; // Search candidate order

 struct IWNN_DIC_SET* dicSet; // Dictionary set

 struct { …} partsOfSpeech; // Member for internal processing

 wchar_t* reading; // Search reading string

 u16 readingLen; // Member for internal processing

 wchar_t* kanji; // Pre-confirmation string during

 prediction candidate search

 IWNN_CHARSET* charSet; // Fuzzy character set

 ...

};

CTR iWnn Programming Manual

 2011–2013 Nintendo 63 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 8-10 Structure Members

Member Description

u8
condition.operati
on

Search method:
Forward lookup complete match search (0)
Forward lookup prefix match search (1)
Derived search (2)
Reverse lookup complete match search (3)
Reverse lookup prefix match search (4)

u8
condition.mode

Search candidate order:
Frequency order (0)
Reading order (1)
Registration order (2)
Reading order search can be used only when forward lookup prefix match search is
specified.
Registration order searches can only be used with a learning dictionary or user
dictionary. As such, only an empty string can be specified as the reading string for
words to be searched.

IWNN_DIC_SET
condition.dicSet

Dictionary set to be searched.

wchar_t*
condition.reading

Reading string of the word to be searched for.
Add a terminator at the end of the string.

wchar_t*
condition.kanji

Pre-confirmation string during derived search.
Add a terminator at the end of the string.

IWNN_CHARSET*
condition.charSet

Fuzzy character set to use in fuzzy search.
Set to NULL if not using fuzzy searches. Fuzzy searches can be used only with
forward lookup prefix match search and reverse lookup prefix match search.

8.5.1 Search Methods and Search Candidate Order by Dictionary
The following limitations are placed on the search method and search candidate order specification,
depending on the dictionary structure.

iWnn Programming Manual CTR

CTR-06-0160-001-D 64  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 8-11 Search Method and Search Candidate Order by Dictionary

Dictionary Type Dictionary

Dictionaries for forward lookup
complete match search

Compressed customized dictionary
Ancillary word dictionary
Single kanji dictionary

Dictionaries for forward lookup
prefix match searches Compressed customized dictionary

Dictionaries for reverse lookup
complete match searches

Compressed customized dictionary
Single kanji dictionary (with morphological analysis support)
User dictionary

Integrated dictionary Integrated dictionary

Dictionary for derived searches
Uncompressed customized dictionary
Learning dictionary

Other
No reading prediction dictionary
Rule dictionary

Dictionaries that can be used for fuzzy searches are dictionaries for forward lookup prefix match
search, dictionaries for reverse lookup prefix match searches, dictionaries for derived searches, and
the integrated dictionary.

8.5.2 Dictionary Type and Search Method

Table 8-12 Dictionary Type and Search Method

Search
Method

Dictionary
Type

Forward
Lookup

Complete
Match
Search

Forward
Lookup

Prefix Match
Search

Reverse
Lookup

Complete
Match Search

Reverse
Lookup

Prefix Match
Search

Derived
Search

Dictionary for forward
lookup complete
match search

Yes No No No No

Dictionary for forward
lookup prefix match
search

Yes Yes No No No

Dictionary for reverse
lookup complete
match search

Yes Yes Yes No No

Integrated dictionary Yes Yes Yes Yes Yes

Dictionary for derived
searches Yes Yes Yes No Yes

CTR iWnn Programming Manual

 2011–2013 Nintendo 65 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

8.5.3 Search Method and Search Candidate Order

Table 8-13 Search Method and Search Candidate Order

Search Candidate
Order

Search Method

Frequency
Order

Reading
Order

Registration
Order

FFFForward lookup
complete match search Yes No No

Forward lookup prefix
match search Yes Yes Yes

Reverse lookup
complete match
searches

Yes No No

Reverse lookup prefix
match search Yes No No

Derived search Yes No No

• No reading prediction dictionaries and rule dictionaries cannot be searched.
• Obtained candidates with the same reading are re-arranged in candidate order only for user

dictionaries. Candidates with the same reading are arranged in frequency order in the case of other
dictionaries.

• Searches can be made in registration order only for learning dictionaries and user dictionaries.

8.6 Word Registration Information (IWNN_WORD_INFO)
The word registration information structure specifies parameters when adding words to the user
dictionary or learning dictionary.

Code 8-6 Word Registration Information (IWNN_WORD_INFO) Structure Configuration

struct IWNN_WORD_INFO {

 u8 partsOfSpeechGroup; // Part of speech

 group

 wchar_t reading[NJ_MAX_LEN+NJ_TERM_SIZE]; // Reading

 wchar_t candidate[NJ_MAX_RESULT_LEN+NJ_TERM_SIZE]; // Candidate

 wchar_t additional[NJ_MAX_ADDITIONAL_LEN+NJ_TERM_SIZE]; // Additional

 information

 struct { // <Independent

 word information >

 u16 readingLen; // Reading string length

 u16 candidateLen; // Candidate string

 length

 u32 partsOfSpeech; // Part of speech

 u32 attr; // Attribute data

iWnn Programming Manual CTR

CTR-06-0160-001-D 66  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

 u16 frequency; // Frequency

 } stem;

struct { // <Anciallary word

 information>

 u16 readingLen; // Reading string length

 u16 candidateLen; // Candidate string

 length

 u32 partsOfSpeech; // Part of speech

 s16 frequency; // Frequency

 } ancillary;

 s16 connect; // Connection flag

};

Table 8-14 Word Registration Information Structure Members

Member Description

u8
partsOfSpeechGroup

Part of speech group number for word to be added.
NJ_PARTS_OF_SPEECH_NOUN: Common noun/proper noun (conjugates with
“suru”).
NJ_PARTS_OF_SPEECH_NOUN_NO_CONJUGATION: Common noun/proper noun
(does not conjugate with “suru”).
NJ_PARTS_OF_SPEECH_PERSON_NAME: Person’s name.
NJ_PARTS_OF_SPEECH_PLACE_NAME: Place name/station name.
NJ_PARTS_OF_SPEECH_SYMBOL: Symbol.
NJ_PARTS_OF_SPEECH_DETAIL: Get details.
If get details (NJ_PARTS_OF_SPEECH_DETAIL) is specified, the word is
registered using part of speech information for independent word information
(stem) and ancillary word information (ancillary).
If you are not using the registerword information function (NjxGetWordInfo),
set a value other than NJ_PARTS_OF_SPEECH_DETAIL.

wchar_t
reading

Reading string for the word to be added.
Add a terminator at the end of the string.

wchar_t
candidate

Candidate (conversion result) string for the word to be registered.
Add a terminator at the end of the string.

wchar_t
additional

Additional information string for the word to be registered.
Add a terminator at the end of the string.
If the dictionary being registered into does not include additional information, the
content of this member is ignored.

struct
stem

Independent word information.
This includes the reading string length of the independent word part, the
candidate string length, the part of speech, attribute data, and frequency
information. This information is set using the get word information function
(NjxGetWordInfo) from the processing result structure (IWNN_RESULT).

CTR iWnn Programming Manual

 2011–2013 Nintendo 67 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Member Description

struct
ancillary

Ancillary word information.
This includes the reading string length of the ancillary word part, the candidate
string length, the part of speech, attribute data, and frequency information. This
information is set using the get word information function (NjxGetWordInfo)
from the processing result structure (IWNN_RESULT).

s16
connect

Connection flag.
Specifies whether to perform associative learning with the word added
immediately before.
0: Do not perform associative learning.
1: Perform associative learning.
This setting is enabled only for the learning dictionary.

8.7 Fuzzy Character Set (IWNN_CHARSET)
The fuzzy character set structure specifies fuzzy character patterns to use during fuzzy searches.

Code 8-7 Fuzzy Character Set (IWNN_CHARSET) Structure Configuration

struct IWNN_CHARSET {

 u16 charSetCnt; // Number of registrations

 wchar_t* from[NJ_MAX_CHARSET]; // Pre-replacement character

 wchar_t* to[NJ_MAX_CHARSET]; // Post-replacement character

};

Table 8-15 Fuzzy Character Set Structure Members

Member Description

u16
charSetCnt

Number of registrations.
Specify the number of configured fuzzy string patterns.

wchar_t*
from

Pre-replacement character.
Specify one character for the pre-replacement character.
Add a terminator at the end of the string.

wchar_t*
to

Post-replacement character.
Specify 1 to 3 characters for the post-replacement character.
Add a terminator at the end of the string.

For example, make the following definitions to show the candidates “ば” and “ぱ”, when the character

“は” has been entered for a fuzzy search.

iWnn Programming Manual CTR

CTR-06-0160-001-D 68  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Code 8-8 Fuzzy Search Character Set (IWNN_CHARSET) Structure Definition Example

const u8 HA_utf16BE[4]={0x30,0x6F,0x00,0x00}; // は

const u8 BA_utf16BE[4]={0x30,0x70,0x00,0x00}; // ば

const u8 PA_utf16BE[4]={0x30,0x71,0x00,0x00}; // ぱ

static IWNN_CHARSET charSet =

{

 2, // charSetCnt

 {(wchar_t*)HA_utf16BE, (wchar_t*)HA_utf16BE, 0}, // from

 {(wchar_t*)BA_utf16BE, (wchar_t*)PA_utf16BE, 0}, // to

};

8.8 Option Settings (IWNN_OPTION)
The option settings structure specifies iWnn operational parameters.

Code 8-9 Option Settings (IWNN_OPTION) Structure Configuration

struct IWNN_OPTION {

 u16 autoConversionCnt; // Number of candidates for automatically

 starting multiple phrase conversion.

 u16 extensionMode; // API operational mode setting

 void* phase2Filter; // Candidate filter function pointer

 void* phase2Option; // Candidate filter function option

 void* phase1Filter; // Dictionary lookup filter function pointer

 void* phase1Option; // Dictionary lookup filter function option

};

CTR iWnn Programming Manual

 2011–2013 Nintendo 69 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 8-16 Option Settings Structure Members

Member Description

u16
autoConversionCnt

Number of candidates for automatically starting multiple phrase conversion.
If the number of prediction candidates that can be obtained by the get prediction
candidates function is less than this value, multiple phrase conversion results
are added.
The default value is NJ_MAX_CANDIDATE.

u16
extensionMode

API operational mode setting.
Sets OR for the API processing method.
NJ_ADD_WORD_OPTIMIZE_OFF:
Turns off optimization of the learning dictionary when using the register word
function. (See section 13.5B.3 FAQ Regarding Processing Methods.)
IWNN_OPTION_FORECAST_TOP_FREQUENCY:
Enables the retrieval of prefix match candidates in frequency order when using
the get prediction candidates function. (See section 13.5B.3 FAQ Regarding
Processing Methods.)

void*
phase2Filter

Candidate filter function pointer
Specifies a pointer to the function performing filtering of phrase candidates
generated during the conversion process. When NULL is specified, dictionary
lookup filtering is not executed.
The default value is NULL.

void*
phase2Option

Candidate filter function option.
Used to set an option for the candidate filter function.
The data to be set is defined for each filter function.

void*
phase1Filter

Dictionary lookup filter function pointer.
Specifies a pointer to the function performing filtering of words matching search
conditions during the dictionary search process. When NULL is specified,
dictionary lookup filtering is not executed.
The default value is NULL.

void*
phase1Option

Dictionary lookup filter function option.
Used to set an option for the dictionary lookup filter function.
The data to be set is defined for each filter function.

For details on filtering, refer to Chapter 12 Candidate/Dictionary Lookup Filtering.

iWnn Programming Manual CTR

CTR-06-0160-001-D 70  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

8.9 Prediction Options (IWNN_ANALYZE_OPTION)
The prediction options structure specifies operational parameters used during prediction and
conversion.

Code 8-10 Analysis Options (IWNN_ANALYZE_OPTION) Structure Configuration

struct IWNN_ANALYZE_OPTION {

 u16 mode; // Parsing limit

 u16 forecastLearnLimit; // Maximum number of prediction candidates to

 get from the learning dictionary

 u16 forecastLimit; // Maximum number of obtainable prediction

 candidates

 u8 charMin; // Minimum number of reading characters

 u8 charMax; // Maximum number of reading characters

}

Table 8-17 Prediction Options Structure Members

Member Description

u16
mode

Parsing limit (bit specification).
NJ_NO_LEARN: No prediction results in learning dictionary.
NJ_NO_PREDICTION: No prediction results in prediction dictionary.
NJ_NO_MULTI_CONVERSION: No multiple phrase conversion results.
NJ_NO_SINGLE_CONVERSION: No single phrase conversion results.
NJ_NO_ALL_CANDIDATE: No results from get all candidates.
NJ_NO_READING_ON: No reading prediction filter search enabled.
NJ_RELATION_ON: Derived prediction filter search enabled.
NJ_CLEAR_LEARN_CACHE: Suppress clearing of learning dictionary cache.
Recommended value:
(NJ_NO_MULTI_CONVERSION | NJ_NO_SINGLE_CONVERSION |
NJ_RELATION_ON | NJ_NO_READING_ON)

u16
forecastLearnLimit

Maximum number of prediction candidates to get from the learning dictionary.
Limits the number of results retrieved from prefix match prediction analysis and
no reading parsing.
This parameter is ignored when NULL is specified for the string to be parsed
(reading).
This parameter is ignored if NJ_NO_LEARN is specified for the parsing limit
(mode).
Minimum value: 0, Maximum value 100.
Recommended value: 20 to number allowed by the candidate window size.

CTR iWnn Programming Manual

 2011–2013 Nintendo 71 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Member Description

u16
forecastLimit

Maximum number of obtainable prediction candidates.
Limits the number of results of prefix match prediction analysis and no reading
analysis retrieved from a learning dictionary, standard prediction dictionary,
compressed customized dictionary, or uncompressed customized dictionary.
This parameter is ignored when NULL is specified for the string to be parsed
(reading).
Minimum value: 0, Maximum value: 100 (Recommended value: 100).
Specify a value equal to or greater than forecastLearnLimit and less than or
equal to the maximum number of obtainable candidates (NJ_MAX_CANDIDATE).

u8
charMin

Minimum number of reading characters.
Specifies the minimum number of reading characters for words output by
prediction.
Specify the number of characters according to the typical meaning of a
character.
Minimum value: 0, Maximum value: NJ_MAX_LEN (default 0).

u8
charMax

Maximum number of reading characters.
Specifies the maximum number of reading characters for words output by
prediction.
Specify the number of characters according to the typical meaning of a
character.
Minimum value: 0, Maximum value: NJ_MAX_LEN (default NJ_MAX_LEN).

Parsing Limits

These parameters can be used to specify the candidates that can be obtained using this API according
to the specification made.

If multiple settings are made, specify the logical sum (OR) of each value.

If prediction candidates for the same reading string are to be obtained, always specify the same
parsing limit.

Table 8-18 Prediction Options Parsing Limits

Type Description

NJ_NO_LEARN
No prediction results in a learning dictionary.
Does not get prediction results from learning dictionary.

NJ_NO_PREDICTION

No prediction results in a prediction dictionary.
Does not get prediction results from a standard prediction dictionary,
compressed customized dictionary, or uncompressed customized
dictionary.

NJ_NO_MULTI_CONVERSION

No multiple phrase conversion results.
Does not get multiple phrase conversion results.
In addition, results are not obtained when retrieval of results is being
suppressed by an option setting, even if this is not specified.

NJ_NO_SINGLE_CONVERSION
No single phrase conversion results.
Does not get single phrase conversion results.

iWnn Programming Manual CTR

CTR-06-0160-001-D 72  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Type Description

NJ_NO_ALL_CANDIDATE
No results from get all candidates.
Does not get results from get all candidates.

NJ_NO_READING_ON

No reading prediction filter search enabled.
Specify this parameter when including prediction results from a no
reading prediction dictionary, with prediction results for a specified
reading.

NJ_RELATION_ON
Derived prediction filter search enabled.
Specify this parameter when including derived prediction results from an
integrated dictionary with prediction results for a specified reading.

NJ_NO_CLEAR_LEARN_CACHE
Suppress clearing of learning dictionary cache.
Specify this parameter when suppressing the clearing of the cache, for
the learning dictionary being used for a fuzzy search.

Specify parsing limits according to the length of strings to be analyzed, because processing to create
candidates using multiple/single phrase conversion will take a long time, if the string to be parsed is too
long.

8.10 State Setting (IWNN_STATE)
The state setting structure sets the peripheral state required for making situational adaptive
predictions.

Code 8-11 State Setting (IWNN_STATE) Structure Configuration

struct IWNN_STATE {

 s16 system[NJ_MAX_STATE]; // Standard state setting

 s16 extension[NJ_MAX_EXTENSION_STATE]; // Extended state setting

 IWNN_STATE_CALC_PARAMETER* calcParam; // State calculation parameter

}

CTR iWnn Programming Manual

 2011–2013 Nintendo 73 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 8-19 State Setting Structure Members

Member Description

s16
system

Standard state setting.
This state setting is used internally by iWnn in the conversion process.
A bias value is set for each state in each of the elements of the array.
The allowable setting range is -1000 to 1000.
Each bias value is updated during the iWnn learning process.
If a default bias value has already been set by the application, iWnn
will operate in line with that state setting.

s16
extension

Extended state setting.
Standard state settings can also be used to set unexpressible states.
This is not used internally by iWnn. This setting can be freely used
with pseudo-dictionaries.

IWNN_STATE_CALC_PARAMETER*
calcParam

State calculation parameter.
Sets a parameter used to do things like automatically update the state
setting bias value and determine the priority level of candidates using
the bias value.
Default values are set when NULL is specified.

iWnn Programming Manual CTR

CTR-06-0160-001-D 74  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

8.10.1 Standard State Settings
The types of states used internally by iWnn are as follows.

8.10.1.1 16 Categories

Table 8-20 Standard State Settings (16 Categories)

Type Category
State Control Index of the Standard State Setting Array

Description App. iWnn

Input Field

Person’s Name

Yes

－

NJ_CATEGORY_FIELD_PERSON
Sets priority for personal names.
This is used with name input fields, for instance.

Noun
Concatenation

NJ_CATEGORY_FIELD_NOUN
Prioritizes nouns.
This is used in situations such as file name input.

Start of Text Yes
NJ_CATEGORY_FIELD_HEAD
Prioritizes words that start text.

Expression
Types

Colloquial
Expressions

Yes Yes

NJ_CATEGORY_EXPRESSION_COLLOQUIAL

Written
Expressions NJ_CATEGORY_EXPRESSION_WRITTEN

Time
Expressions

Time of day:
Morning

Yes Yes

NJ_CATEGORY_TIME_MORNING

Time of day:
Afternoon NJ_CATEGORY_TIME_NOON

Time of day:
Night NJ_CATEGORY_TIME_NIGHT

Season: Spring

Yes Yes

NJ_CATEGORY_TIME_SPRING

Season:
Summer NJ_CATEGORY_TIME_SUMMER

Season: Fall NJ_CATEGORY_TIME_AUTUMN

Season: Winter NJ_CATEGORY_TIME_WINTER

Relative time:
Past

－ ○

NJ_CATEGORY_TIME_PAST

Relative time:
Future NJ_CATEGORY_TIME_FUTURE

Feeling
Expressions

Positive
Sense

Yes Yes

NJ_CATEGORY_FEEL_PLUS

Negative
Sense

NJ_CATEGORY_FEEL_MINUS

CTR iWnn Programming Manual

 2011–2013 Nintendo 75 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

8.10.1.2 32 Categories

The number of categories can be extended by specifying the NJ_OPT_STATE_TYPE2 compile option.

Table 8-21 Standard State Settings (32 Categories)

Type Category
State Control

Index of the Standard State Setting Array
Description App. iWnn

Input Field

Person’s Name

Yes

－

NJ_CATEGORY_FIELD_PERSON
Sets priority for personal names.
This is used with name input fields, for instance.

Noun Continue
NJ_CATEGORY_FIELD_NOUN
Prioritizes nouns.
This is used in situations such as file name input.

Start of Text Yes
NJ_CATEGORY_FIELD_HEAD
Prioritizes words that start text.

Expression
Types

Colloquial
Expressions

Yes Yes

NJ_CATEGORY_EXPRESSION_COLLOQUIAL

Written
Expressions NJ_CATEGORY_EXPRESSION_WRITTEN

Time
Expressions

Time of day:
Morning

Yes Yes

NJ_CATEGORY_TIME_MORNING

Time of day:
Afternoon NJ_CATEGORY_TIME_NOON

Time of day:
Night NJ_CATEGORY_TIME_NIGHT

Relative time:
Past

－ Yes

NJ_CATEGORY_TIME_PAST

Relative time:
Future NJ_CATEGORY_TIME_FUTURE

Feeling
Expressions

Positive
Sense

Yes Yes

NJ_CATEGORY_FEEL_PLUS

Negative
Sense

NJ_CATEGORY_FEEL_MINUS

iWnn Programming Manual CTR

CTR-06-0160-001-D 76  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Type Category State Control Index of the Standard State Setting Array

Month
Expressions

Month: January

Yes Yes

NJ_CATEGORY_MONTH_JANUARY

Month:
February NJ_CATEGORY_MONTH_FEBRUARY

Month: March NJ_CATEGORY_MONTH_MARCH

Month: April NJ_CATEGORY_MONTH_APRIL

Month: May NJ_CATEGORY_MONTH_MAY

Month: June NJ_CATEGORY_MONTH_JUNE

Month: July NJ_CATEGORY_MONTH_JULY

Month: August NJ_CATEGORY_MONTH_AUGUST

Month:
September NJ_CATEGORY_MONTH_SEPTEMBER

Month: October NJ_CATEGORY_MONTH_OCTOBER

Month:
November NJ_CATEGORY_MONTH_NOVEMBER

Month:
December NJ_CATEGORY_MONTH_DECEMBER

Excluding the input field type state, if learning is performed by default, iWnn adds one to the state bias
values for all categories to which the learned word belongs. Also, the bias value for the start of text
category is always initialized to zero during word learning.

You can retrieve candidates by prioritizing those applicable to the state, by having the application
check for changes in the bias value during learning and updating the state setting accordingly. For
example, if the past attribute is incremented by one, given a past category with bias of +30 and a future
category of bias -800, words in the past category will be prioritized during the next prediction
conversion, and words in the future category will be moved to the bottom of the candidate list.

By setting the compile option to NJ_ADD_STATE_TYPE2, the state setting bias value can be
automatically updated within iWnn to an appropriate value when using the standard dictionary
frequency value.

The bias value is added to the candidate frequency value when determining the priority of candidates.
For example, 100 is added to the normal frequency value for candidates of a category with a bias
value of +100.

The frequency value of the candidate varies in the range 0 to 1000. If the value goes over the upper
limit or under the lower limit, it is clamped at either 1000 or 0. In other words, a candidate in a
category with a bias value of +1000 will always have a maximum frequency value (1000) and have
priority over learning dictionary candidates. Also, a candidate with a bias value of -1000 always has the
minimum frequency value (0) and has the lowest priority.

CTR iWnn Programming Manual

 2011–2013 Nintendo 77 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

8.11 State Calculation Parameters (IWNN_STATE_CALC_PARAMETER)
The state calculation parameters structure sets parameters used with the following processes.

• Updating the state setting bias value for each category during the learning process.
• Determining the priority order of candidates during situational adaptive prediction.

Code 8-12 State Calculation Parameters (IWNN_STATE_CALC_PARAMETER) Structure
Configuration
struct IWNN_STATE_CALC_PARAMETER {

s16 sysMaxBias[NJ_MAX_STATE]; // Maximum bias value

s16 sysMinBias[NJ_MAX_STATE]; // Minimum bias value

s16 sysAddBias[NJ_MAX_STATE]; // Value always added to bias

s16 sysBaseBias[NJ_MAX_STATE]; // Bias restore value

s16 sysChangeBias[NJ_MAX_STATE][NJ_MAX_STATE];// Value added to bias during

 learning

s16 dicInfoMax[NJ_MAX_DIC]; // Maximum state setting

 dictionary frequency value

s16 dicInfoMin[NJ_MAX_DIC]; // Minimum state setting

 dictionary frequency value

}

Table 8-22 State Calculation Parameters Structure Members

Member Description

s16
sysMaxBias

Maximum bias value.
Specifies the maximum bias value to be updated internally by iWnn during learning.
The allowable range is -1000 to 1000.

s16
sysMinBias

Minimum bias value.
Specifies the minimum bias value to be updated internally by iWnn during learning.
The allowable range is -1000 to 1000.

s16
sysAddBias

Value always added to bias.
Specifies a bias value to always be added to a bias of zero or less during learning.
The allowable range is -1000 to 1000.

s16
sysBaseBias

Bias restore value.
Specifies a bias value to be restored when the bias is equal to or less than this value.
The allowable range is -1000 to 1000.

s16
sysChangeBias

Value added to bias during learning.
Specifies the bias value to be added to bias values for each state during learning.
The allowable range is -1000 to 1000.

s16
dicInfoMax

Maximum state setting dictionary frequency value.
Sets the maximum dictionary frequency value when using situational adaptive
prediction.
The allowable range is -1000 to 1000.

iWnn Programming Manual CTR

CTR-06-0160-001-D 78  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Member Description

s16
dicInfoMin

Minimum state setting dictionary frequency value.
Sets the minimum dictionary frequency value when using situational adaptive
prediction.
The allowable range is -1000 to 1000.

8.12 Merge Candidates (IWNN_MERGE_RESULT)
The merge candidates structure is used to store candidate list information formed from merging
multiple processing results (IWNN_RESULT). This is used by the merge candidate lists function
(NjxMergeWordList).

Code 8-13 Merge Candidates (IWNN_MERGE_RESULT) Structure Configuration

struct IWNN_MERGE_RESULT {

 IWNN_RESULT* result; // Phrase information

 IWNN_CLASS* iwnn; // Parsing information class

}

Table 8-23 Merge Candidates Structure Members

Member Description

IWNN_RESULT*
result

Phrase information (processing result structure).
This is the processing result, resulting from obtaining conversions, word searches, or
other such processes.

IWNN_CLASS*
iwnn

Parsing information class.
The parsing information class is used when generating the phrase information (result).
This is used to get information such as the reading or notation of a phrase from phrase
information.

CTR iWnn Programming Manual

 2011–2013 Nintendo 79 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

9 Detailed Descriptions of Functions
9.1 Get Reading String Function (NjxGetStroke)

This function is used to get candidate reading strings from the process result structure.

If the return value indicates an error, the contents of the buffer for storing the reading string (buf) are
invalid.

Code 9-1 Get Reading String Function (NjxGetStroke) Declaration

s16 NjxGetStroke(

 wchar_t* buf, // Reading string storage buffer

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result, // Process result structure

 u16 bufSize // Reading string storage buffer byte size

)

Table 9-1 Get Reading String Function (NjxGetStroke) Arguments

Input/
Output Argument Description

OUT
wchar_t*
buf

Reading string storage buffer.
Allocates a buffer and specifies a pointer.
Allocates memory for a wchar_t array having size of NJ_MAX_LEN +
NJ_TERM_SIZE.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Process result structure.
An error results if NULL is specified.

IN
u16
bufSize

Reading string storage buffer byte size.
Specify the size including string terminator.
Specify the size in terms of number of bytes.

Table 9-2 Get Reading String Function (NjxGetStroke) Return Values

Return
Value Description

s16
String length of the obtained string (not including the terminator).
Negative value: Error.

iWnn Programming Manual CTR

CTR-06-0160-001-D 80  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-3 Get Reading String Function (NjxGetStroke) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_PARAM_READING_NULL A NULL pointer was specified in the argument (reading).

NJ_ERR_BUFFER_NOT_ENOUGH

• A NULL pointer was specified in the argument (buf).
• 0 was specified in the argument (bufSize).
• The reading string length in the argument (result) is greater

than the argument (bufSize).

NJ_ERR_INVALID_RESULT

• Unsupported code was set for operations on the argument
(result).

• The dictionary to get candidates from did not return a reading
string for reverse lookup results.

• The argument (result) specifies morphological analysis
process results.

NJ_ERR_DIC_TYPE_INVALID Unsupported code was set for the dictionary type obtained from
the word dictionary address given by the argument (result).

NJ_ERR_DIC_BROKEN

Returned when one of the following situations occur when an
uncompressed dictionary is targeted by the argument (result):
• Queue data stored in the given queue ID is destroyed.
• Reading data having a length greater than NJ_MAX_LEN+1 is

stored for word data in the dictionary.
• The link information when one word uses multiple keys is

destroyed.

NJ_ERR_READING_TOO_LONG The reading string length of the argument (result) is greater than
NJ_MAX_LEN.

9.2 Get Candidate String Function (NjxGetCandidate)
This function is used to get a candidate’s candidate string (process result) from the process result
structure.

If the return value indicates an error, undefined values may be stored in the buffer for storing candidate
strings.

Code 9-2 Get Candidate String Function (NjxGetCandidate) Declaration

s16 NjxGetCandidate(

 wchar_t* buf, // Candidate string storage buffer

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result, // Process result structure

 u16 bufSize // Buffer byte size

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 81 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-4 Get Candidate String Function (NjxGetCandidate) Arguments

Input/
Output Argument Description

OUT
wchar_t*
buf

Candidate string storage buffer.
Allocates a buffer and specifies a pointer.
If the candidate is a result of morphological analysis, allocate a buffer of
the size MM_MAX_MORPHOLIZE_LEN+NJ_TERM_SIZE.
If the result of other processing, allocate a wchar_t array having the size
NJ_MAX_RESULT_LEN+NJ_TERM_SIZE.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Process result structure
An error results if NULL is specified.

IN
u16
bufSize

Candidate string storage buffer byte size.
Specify the size including string terminator.
Specify the size in terms of number of bytes.

Table 9-5 Get Candidate String Function (NjxGetCandidate) Return Values

Return
Value Description

s16
String length of the obtained string (not including the terminator).
Negative value: Error.

Table 9-6 Get Candidate String Function (NjxGetCandidate) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL
A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_BUFFER_NOT_ENOUGH

• A NULL pointer was specified in the argument (buf).
• 0 was specified in the argument (bufSize).
• The reading string length in the argument (result) is greater

than the argument (bufSize).

NJ_ERR_INVALID_RESULT

• Unsupported code was set for operations on the argument
(result).

• 0 was specified for the candidate string length in the argument
(result).

NJ_ERR_CANDIDATE_TOO_LONG A value greater than NJ_MAX_RESULT_LEN was set for the
candidate string length in the argument (result).

iWnn Programming Manual CTR

CTR-06-0160-001-D 82  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Error Code Description

NJ_ERR_DIC_TYPE_INVALID
Unsupported code was set for the dictionary type obtained from
the single-word dictionary address given by the argument
(result).

NJ_ERR_DIC_BROKEN

Returned when one of the following situations occur when an
uncompressed dictionary is targeted by the argument (result):
• The queue ID (result->word.stem.location.current)

is destroyed.
• The reading string in a user dictionary is longer than or equal

to NJ_MAX_USER_LEN, or the candidate string is longer than
or equal to NJ _MAX_USER_CANDIDATE_LEN.

• The reading string in a dictionary other than a user dictionary
is longer than NJ_MAX_USER_LEN, or the candidate string is
longer than to NJ_MAX_USER_CANDIDATE_LEN.

• When one word uses multiple keys, link information is
destroyed.

9.3 Get Dictionary Handle Function (NjxGetDicHandle)
This function is used to get a dictionary handle from the processing result structure.

Code 9-3 Get Dictionary Handle Function (NjxGetDicHandle) Declaration

IWNN_DIC_HANDLE NjxGetDicHandle(

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result // Process result structure

)

Table 9-7 Get Dictionary Handle Function (NjxGetDicHandle) Arguments

Input/
Output Argument Description

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Process result structure.
“Unable to retrieve” is returned if NULL is specified.

Table 9-8 Get Dictionary Handle Function (NjxGetDicHandle) Return Values

Return Value Description

IWNN_DIC_HANDLE
Dictionary handle.
NULL indicates the handle cannot be obtained.

CTR iWnn Programming Manual

 2011–2013 Nintendo 83 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-9 Get Dictionary Handle Function (NjxGetDicHandle) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

The dictionary handle cannot be obtained when the following process result structure specifications
have been made.

• If the operation information is NJ_FUNC_CONVERT_MULTIPLE or NJ_FUNC_CONVERT_SINGLE for
process results from the get prediction candidate function (NjxAnalyze).

• If the operation information is NJ_DIC_PSEUDO for process results.
• If process results are NULL.

If process results (IWNN_RESULT) were obtained using the conversion function (NjxConversion) or
get all candidates function (NjxAllCandidates), the dictionary handle can be obtained for
independent words included in process results.

9.4 Create Dictionary Function (NjxCreateDic)
This function writes dictionary header information into the specified user dictionary or learning
dictionary, and initializes the dictionary. To allocate memory for these dictionaries, you must specify the
dictionary handle and its size.

Code 9-4 Create Dictionary Function (NjxCreateDic) Declaration

s16 NjxCreateDic(

 IWNN_DIC_HANDLE handle, // Dictionary handle

 const IWNN_CLASS* iwnn, // Analysis information class

 s8 type, // Dictionary type

 u32 size // Dictionary byte size

)

iWnn Programming Manual CTR

CTR-06-0160-001-D 84  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-10 Create Dictionary Function (NjxCreateDic) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_DIC_HANDLE
Handle

The dictionary handle of a user dictionary or learning dictionary.
An error results if NULL is specified.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
u8
type

Dictionary type.
NJ_CREATE_DIC_TYPE_USER: User dictionary.
NJ_CREATE_DIC_TYPE_LEARN_AWNN: Learning dictionary -AWnn type.
NJ_CREATE_DIC_TYPE_LEARN: Learning dictionary -iWnn type.
NJ_CREATE_DIC_TYPE_USER_ADDITIONAL: User dictionary (additional
information).
NJ_CREATE_DIC_TYPE_LEARN_ADDITIONAL: Learning dictionary -
iWnn type- (additional information).

IN
u32
size

Byte size of the memory region specified by handle.
This is set at either NJ_USER_DIC_SIZE (dictionary without additional
information) or NJ_USER2_DIC_SIZE (dictionary with additional
information) for user dictionaries. A learning structure is created according
to the size of the specified memory region for learning dictionaries. An
error results if the memory cannot be initialized as a dictionary.

Table 9-11 Create Dictionary Function (NjxCreateDic) Return Values

Return
Value Description

s16
Negative value: Error.
Other values indicate normal termination.

Table 9-12 Create Dictionary Function (NjxCreateDic) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_DIC_HANDLE_NULL NULL was specified in the argument (handle).

NJ_ERR_CREATE_TYPE_INVALID A value other than 0, 1, or 2 was specified in the argument
(type).

NJ_ERR_AREA_SIZE_INVALID

• A value less than the minimum size required to create a
dictionary was specified in the argument (size).

• A value where the queue size exceeds 256KB was specified in
the argument (size).

With iWnn, to account for restoration of the learning memory region and word registration region,
writing to these memory regions is performed in units of u16 (2 bytes). Warnings are, therefore,
sometimes output when compiling this system.

CTR iWnn Programming Manual

 2011–2013 Nintendo 85 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

In addition, if the start address of the dictionary handle specified to the function for creating a dictionary
memory region is odd (depending on the system), there is a chance of a bus error occurring. So be
sure the dictionary handle specified to this function is assigned to an even address.

9.4.1 Size and Number of Registered Entries in User Dictionaries
The dictionary size (NJ_USER_DIC_SIZE) of a user dictionary is calculated based on:

• The maximum reading string length of words registered in the user dictionary (NJ_MAX_USER_LEN).
• The maximum candidate string length of words registered in the user dictionary

(NJ_MAX_USER_CANDIDATE_LEN).
• The maximum number of words registered in the user dictionary (NJ_MAX_USER_COUNT).

Table 9-13 Size and Number of Registered Entries in User Dictionaries

Category Description

Header Region 80 bytes.

Memory Per Entry

Maximum reading string length of words registered in the user dictionary
*sizeof(wchar_t)
+ Maximum candidate string length of words registered in the user dictionary
*sizeof(wchar_t)
+ 9 bytes.

For example, when using Unicode (UTF-16BE), if the maximum reading string length of words
registered in the user dictionary (NJ_MAX_USER_LEN) and the maximum candidate string length of
words registered in the user dictionary (NJ_MAX_USER_CANDIDATE_LEN) are both 30, and the
maximum number of words registered in the user dictionary (NJ_MAX_USER_COUNT) is 100, a memory
region of the following size is required:

 80 + (((30 * 2) + (30 * 2) + 9) * 100) = 12980 bytes

9.4.2 Size and Number of Registered Entries in User Dictionaries (With Additional
Information)

The dictionary size (NJ_USER2_DIC_SIZE) of a user dictionary (with additional information) is
calculated based on:

• The maximum reading string length of words registered in the user dictionary (NJ_MAX_USER_LEN).
• The maximum candidate string length of words registered in the user dictionary

(NJ_MAX_USER_CANDIDATE_LEN).
• The maximum additional information string length for words registered in the user dictionary

(NJ_MAX_ADDITIONAL_LEN).
• The maximum number of words registered in the user dictionary (NJ_MAX_USER_COUNT).

iWnn Programming Manual CTR

CTR-06-0160-001-D 86  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-14 Size and Number of Registered Entries in User Dictionaries (With Additional
Information)

Category Description

Header region 80 bytes.

Memory per entry

Maximum reading string length of words registered in the user dictionary
*sizeof(wchar_t)
+ Maximum candidate string length of words registered in the user dictionary
*sizeof(wchar_t)
+ Maximum additional information string length for words registered in the user
dictionary *sizeof(wchar_t)
+ 9 bytes.

For example, when using Unicode (UTF-16BE), if the maximum reading string length of words
registered in the user dictionary (NJ_MAX_USER_LEN), the maximum candidate string length of words
registered in the user dictionary (NJ_MAX_USER_CANDIDATE_LEN), and the maximum additional
information string length for words registered in the user dictionary are all 30, and the maximum
number of words registered in the user dictionary (NJ_MAX_USER_COUNT) is 100, a memory region of
the following size is required:

 80 + (((30 * 2) + (30 * 2) +(30 * 2) + 9) * 100) = 18980 Byte

9.4.3 Size and Number of Registered Entries in Learning Dictionaries
The dictionary size of a learning dictionary depends on the maximum number of registered phrases.

Table 9-15 Size and Number of Registered Entries in Learning Dictionaries (iWnn Type)

Category Description

Header Region 80 bytes

Memory Per Entry 42 bytes

If 1000 entries (maximum 1000 phrases) are registered, a memory region of the size given below is
required.

 80 + (42 * 1000) = 42080 bytes

Table 9-16 Size and Number of Registered Entries in Learning Dictionaries (iWnn Type
With Additional Information)

Category Description

Header Region 80 bytes

Memory Per Entry 44 + Maximum additional information string length *sizeof(wchar_t) bytes.

CTR iWnn Programming Manual

 2011–2013 Nintendo 87 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

If 1000 entries (maximum 1000 phrases) are registered, a memory region of the size given below is
required.

 80 + (84 * 1000) = 84080 bytes

Note: If the maximum additional information string length is 40.

Table 9-17 Size and Number of Registered Entries in Learning Dictionaries (AWnn Type)

Category Description

Header Region 80 bytes

Memory Per Entry 36 bytes

If 1000 entries (maximum 1000 phrases) are registered, a memory region of the size given below is
required.

 80 + (36 * 1000) = 36080 bytes

In the case of both types, one phrase can be learned in one registration area for phrases whose
reading length plus candidate length fits in 27 bytes. If the reading length plus candidate length of a
single phrase exceeds 27 bytes, single-phrase learning is performed using multiple registration areas
in order to consume memory in terms of 27-byte units.

Due to the specifications for predictive text input and kana/kanji conversion, the number of learned
words (phrases) that can be used is the maximum number of phrases that can be registered in the
learning dictionary minus the maximum conversion candidate string length (NJ_MAX_RESULT_LEN).

For example, if a learning dictionary can register a maximum of 1,000 phrases and the longest
conversion candidate string length is 55, the number of learned words (phrases) that can be used
would be as follows:

 1000 - 55 = 945 phrases

9.5 Initialize Function (NjxInit)
This function initializes iWnn variables.

Always call this function when starting to use iWnn and after changing dictionary sets.

Code 9-5 Initialize Function (NjxInit) Declaration

s16 NjxInit(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_OPTION* option // Option settings

)

iWnn Programming Manual CTR

CTR-06-0160-001-D 88  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-18 Initialize Function (NjxInit) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_OPTION*
option

Option settings.
Settings specified for the analysis information class are set by this
function.
Default values are set in the analysis information class if NULL is
specified.

Table 9-19 Initialize Function (NjxInit) Return Values

Return
Value Description

s16
Negative value: Error.
Other values indicate normal termination.

Table 9-20 Initialize Function (NjxInit) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

9.6 Check Dictionary Function (NjxCheckDic)
This function checks the integrity and compatibility of dictionaries, and automatically restores them.

Restoration can be executed by specifying the automatic restoration flag, but only when the dictionary
handle of a user dictionary or learning dictionary has been specified. An error results if automatic
restoration is impossible. If an error occurs, re-create the user or learning dictionary using the create
dictionary function (NjxCreateDic).

Only a minimal dictionary check is made. Sometimes corruption of the dictionary is detected while
using the dictionary, even though no problem was found with the integrity or compatibility of the
dictionary. Try automatic restoration if an error related to dictionary corruption occurs while using this
function.

Code 9-6 Check Dictionary Function (NjxCheckDic) Declaration

s16 NjxCheckDic(

 IWNN_DIC_HANDLE handle, // Dictionary handle

 const IWNN_CLASS* iwnn, // Analysis information class

 u8 dicType, // Dictionary handle type

 u8 restore, // Automatic restoration flag

 u32 size // Dictionary byte size

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 89 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-21 Check Dictionary Function (NjxCheckDic) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_DIC_HANDLE
Handle

Dictionary handle to be checked.
An error results if NULL is specified.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
u8
dicType

The dictionary handle type of the dictionary to be checked.

IN
u8
restore

Automatic restoration flag.
Restoration is performed automatically if the automatic restoration flag is
set for a user dictionary or learning dictionary.
1: Perform automatic restoration.
0: Do not perform restoration (check dictionary only).

IN
u32
size

Dictionary byte size.
Byte size of the dictionary specified by handle.

Table 9-22 Check Dictionary Function (NjxCheckDic) Return Values

Return
Value Description

s16
Negative value: Error.
Other values indicate normal termination.

Table 9-23 Check Dictionary Function (NjxCheckDic) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_DIC_HANDLE_NULL NULL was specified in the argument (dic).

NJ_ERR_INVALID_FLAG An invalid value was specified in the argument (restore).

NJ_ERR_AREA_SIZE_INVALID

• A value less than or equal to the dictionary header size was
specified in the argument (size).

• The dictionary size calculated from information in the
dictionary header given by handle does not match that in the
argument (size).

iWnn Programming Manual CTR

CTR-06-0160-001-D 90  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Error Code Description

NJ_ERR_FORMAT_INVALID

• The ID for the dictionary start/end is invalid.
• The dictionary version inside the dictionary area is invalid.
• The maximum reading length for words stored in the

dictionary, as given in the dictionary header, exceeds
NJ_MAX_LEN.

• The maximum candidate length for words stored in the
dictionary, as given in the dictionary header, exceeds
NJ_MAX_RESULT_LEN.

• An unsupported dictionary type is set in the dictionary header.

NJ_ERR_DIC_BROKEN

• 0 was specified in the argument (restore).
• The number of registered entries given in the dictionary

header exceeds the maximum number of registerable words.
• An invalid value is stored in the index area inside the

dictionary.
• Backup data in case of power failure is corrupted.
• Status allows recovery from power failure.

NJ_ERR_CANNOT_RESTORE

• 1 was specified in the argument (restore).
• The number of registered entries given in the dictionary

header exceeds the maximum number of registerable words.
• An invalid value is stored in the index area inside the

dictionary.
• Backup data in case of power failure is corrupted.
• An attempt was made to recovery from power failure, but

status does not allow recovery.

9.7 Get Character Type Function (NjxGetCharType)
This function gets the string type of the specified result as an independent word or ancillary word.

Because the dividing point between independent words and ancillary words cannot be identified for
multiple and single-phrase conversion results obtained by the prediction function, and candidates
obtained from the learning dictionary, the character type is stored only for the independent word type
(stemType).

If an error occurs, an invalid value may be stored in the character type (stemType or
ancillaryWordType).

CTR iWnn Programming Manual

 2011–2013 Nintendo 91 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-24 List of Character Types

Definition Description

NJ_TYPE_HIRAGANA Hiragana.

NJ_TYPE_KATAKANA Full-width katakana.

NJ_TYPE_HALF_KATAKANA Half-width katakana.

NJ_TYPE_HALF_NUMERIC Half-width numeric (Arabic notation).

NJ_TYPE_FULL_NUMERIC Full-width character (Arabic notation).

NJ_TYPE_UNDEFINE
Other than the above.
(Including cases where character types are mixed, or half-width and full-
width characters are mixed.)

If stemType is other than NULL and there are no independent words, the character type becomes
NJ_TYPE_NONE. This is the same for ancillary words.

Depending on the where the process result (result) was obtained from, it may not be possible to
distinguish between independent words and ancillary words.

Table 9-25 When Independent/Ancillary Words Cannot be Distinguished From the Source
of the Process Result (result)

Function for
Getting Results Operation Note

NjxAnalyze

The character type is set in the
argument (stemType) for all
process results.
NJ_TYPE_NONE is always set
for the argument
(ancillaryWordType).

Because multiple phrase analysis results and
single-phrase analysis results consist of multiple
phrases, character type is determined by this API
for candidates that consist only of independent
words.
Because independent words and ancillary words
cannot be distinguished for candidates obtained
from the learning dictionary, this function
determines the character type for candidates made
up only of independent words.

NjxConversion Basic get character type
operation.

Because independent words and ancillary words
cannot be distinguished for candidates obtained
from the learning dictionary, this function
determines the character type for candidates made
up only of independent words.

NjxAllCandidates Basic get character type
operation.

Because independent words and ancillary words
cannot be distinguished for candidates obtained
from the learning dictionary, this function
determines the character type for candidates made
up only of independent words.

iWnn Programming Manual CTR

CTR-06-0160-001-D 92  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Function for
Getting Results Operation Note

NjxGetWord Basic get character type
operation.

Because independent words and ancillary words
cannot be distinguished for candidates obtained
from the learning dictionary, this function
determines the character type for candidates made
up only of independent words.

MmxSplitWord Basic get character type
operation. -

Code 9-7 Get Character Type Function (NjxGetCharType) Declaration

s16 NjxGetCharType(

 u8* stemType, // Independent word character type

 u8* ancillaryWordType, // Ancillary word character type

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result // Process result

)

Table 9-26 Get Character Type Function (NjxGetCharType) Arguments

Input/
Output Argument Description

OUT
u8*
stemType

Independent word character type.
The character type is not identified if NULL is specified.

OUT
u8*
ancillaryWordTyp
e

Ancillary word character type.
The character type is not identified if NULL is specified.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Process result.
An error results if NULL is specified.

Table 9-27 Get Character Type Function (NjxGetCharType) Return Values

Return
Value Description

s16
Negative value: Error.
0 indicates normal termination.
Returns 0 if both stemType and ancillaryWordType are NULL.

CTR iWnn Programming Manual

 2011–2013 Nintendo 93 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-28 Get Character Type Function (NjxGetCharType) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_INVALID_RESULT Unsupported code was set for operations on the argument
(result).

NJ_ERR_CANDIDATE_TOO_LONG The candidate string length set in the result argument was
greater than NJ_MAX_RESULT_LEN+1.

NJ_ERR_DIC_TYPE_INVALID
Unsupported code was set for the dictionary type obtained from
the single-word dictionary address given by the argument
(result).

NJ_ERR_DIC_BROKEN

Returned when one of the following situations occur when an
uncompressed dictionary is targeted by the argument (result):
• The queue ID (result->word.stem.location.current) is

destroyed.
• When a reading string in the user dictionary longer than
NJ_MAX_USER_LEN or a candidate string longer than
NJ_MAX_USER_CANDIDATE_LEN is found.

• The link information when one word uses multiple keys is
destroyed.

9.8 Change Dictionary Type Function (NjxChangeDicType)
This function changes the specified learning dictionary into an uncompressed custom dictionary.

This function can also change an uncompressed custom dictionary, made from a learning dictionary,
back into a learning dictionary.

Because only dictionary header information inside the specified dictionary handle changes when using
this function, be sure to check dictionary data and verify integrity using the function for checking
dictionaries (NjxCheckDic).

When a learning dictionary (with additional information) is converted, the type is changed to an
uncompressed custom dictionary. When an uncompressed custom dictionary is converted, the type is
changed to a learning dictionary (with additional information).

Code 9-8 Change Dictionary Type Function (NjxChangeDicType) Declaration

s16 NjxChangeDicType(

 IWNN_DIC_HANDLE handle, // Dictionary handle

 const IWNN_CLASS* iwnn, // Analysis information class

 u8 direct // Dictionary type to change to

)

iWnn Programming Manual CTR

CTR-06-0160-001-D 94  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-29 Change Dictionary Type Function (NjxChangeDicType) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_DIC_HANDLE
handle

Dictionary handle.
An error results if NULL is specified.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
u8
direct

Dictionary type to change to:
0: Change from a learning dictionary to an uncompressed custom
dictionary.
1: Change from an uncompressed custom dictionary to a learning
dictionary.
Note that an uncompressed custom dictionary created using the custom
dictionary creation tool cannot be changed to a learning dictionary.

Table 9-30 Change Dictionary Type Function (NjxChangeDicType) Return Values

Return
Value Description

s16
Negative value: Error.
0 indicates normal termination.

Table 9-31 Change Dictionary Type Function (NjxChangeDicType) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_DIC_HANDLE_NULL A NULL pointer was specified in the argument (handle).

NJ_ERR_DIC_TYPE_INVALID A dictionary other than a learning dictionary or uncompressed
custom dictionary was specified in the argument (handle).

NJ_ERR_INVALID_FLAG

An invalid value was specified in the argument (direct).
The dictionary type specified in the argument (handle) cannot
be changed to the dictionary type specified in the argument
(direct).

NJ_ERR_DIC_VERSION_INVALID A dictionary from Advanced Wnn V1.11 or earlier was specified in
the argument (handle).

9.9 Get Prediction Candidate Function (NjxAnalyze)
This function is used to get a list of best candidates. This includes prediction candidate results (fuzzy
prediction candidates), kana-kanji conversion results (multiple and single-phrase conversion), and get
all candidate results.

If the return value is indicates no candidate (0) or an error, an undefined value may be stored in the
processing result (result).

CTR iWnn Programming Manual

 2011–2013 Nintendo 95 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Processing results can be obtained one at a time in the following order by calling this function once.

When a reading is specified:

1. Prediction results from a learning dictionary or dictionary that allows prefix match searches.

2. Multiple phrase conversion results.

3. Single phrase conversion results.

4. Get all candidates results.

When a reading is not specified:

(When getting a prediction candidate to follow one of the above results “When a reading is specified”):

• Relationship prediction results of a learning dictionary, no reading prediction dictionary, integrated
dictionary, or relationship prediction dictionary.

When a reading is not specified:

(When getting a prediction candidate to follow a start-of-text part of speech when the state setting
category has been set to “start of text”):

• Relationship prediction results of a learning dictionary, no reading prediction dictionary, integrated
dictionary, or relationship prediction dictionary.

The dictionaries used for each prediction/conversion process are given below.

Table 9-32 Dictionaries Used for Each Prediction/Conversion Process

Type of Dictionary Prediction
Multiple/single-

Phrase
Conversion

Get All
Candidates

Relationship
Prediction

Integrated Dictionary ◎ ○ ○ ○

Single Kanji Dictionary － － ○ －

User Dictionary ◎ ○ ○ －

Learning Dictionary ◎ ○ ○ ○

No Reading Prediction
Dictionary ○ － － ○

Ancillary Word Dictionary ○ ○ －

Compressed Custom
Dictionary
(Dictionary for forward
lookup complete match
search)

－ － ○ －

Compressed Custom
Dictionary
(Dictionary for forward
lookup prefix match
search)

◎ － ○ －

iWnn Programming Manual CTR

CTR-06-0160-001-D 96  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Type of Dictionary Prediction
Multiple/single-

Phrase
Conversion

Get All
Candidates

Relationship
Prediction

Compressed Custom
Dictionary
(Dictionary for reverse
lookup complete match
search)

◎ － ○ －

Uncompressed Custom
Dictionary ◎ － ○ ○

Rule Dictionary ○ ○ ○ ○

(◎: Use (fuzzy search included), ○: Use (no fuzzy search), －: Not used)

Be sure to include an ancillary word dictionary in the dictionary set when using multiple phrase
conversion and single-phrase conversion results.

The longer the input character string, the more time required for multiple and single-phrase analysis. A
means for dealing with this, such as applying a limit based on input string length, may be required
when getting multiple phrase ad single-phrase analysis results under high-speed button input
conditions.

These operational settings are made using prediction options (IWNN_ANALYZE_OPTION). For details,
refer to section 8.9 Prediction Options (IWNN_ANALYZE_OPTION).

Code 9-9 Get Prediction Candidate Function (NjxAnalyze) Declaration

s16 NjxAnalyze(

 IWNN_CLASS* iwnn, // Analysis information class

 IWNN_RESULT* result, // Process result structure

 const IWNN_CHARSET* charSet, // Fuzzy character set structure

 const wchar_t* reading, // String to be analyzed

 const IWNN_ANALYZE_OPTION* option // Analysis option

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 97 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-33 Get Prediction Candidate Function (NjxAnalyze) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

OUT
IWNN_RESULT*
Result

Analysis result buffer.
Memory having a size of sizeof(IWNN_RESULT) bytes or more must
be provided.
An error results if NULL is specified.

IN
const IWNN_CHARSET*
charSet

Fuzzy character set structure for making fuzzy searches.
Specify NULL when not being used.
Do not change the content of this buffer until all operations have
ended because it is used internally by the system.

IN
const wchar_t*
reading

String to be analyzed.
Be sure to add a terminator at the end of the string.
If NULL is specified, the character string to be analyzed during the
previous analysis will be used again.
If an empty string (“”) is specified, optimum analysis results to be
connected to previously learned results (NjxSelect) can be obtained.
Do not change the contents of the buffer until all operations are
complete because this character string memory is used internally by
iWnn.

IN

const
IWNN_ANALYZE_OPTION
*
option

Analysis option.
Sets processing to be performed, such as the type of candidate to
be obtained or the maximum number of candidates to get.
If NULL is specified, operations are performed using recommended
and default prediction options.
Note: See 8.9 Prediction Options (IWNN_ANALYZE_OPTION).

Table 9-34 Get Prediction Candidate Function (NjxAnalyze) Return Values

Return
Value Description

s16
Negative value: Error.
0: No candidates.
1: Candidates present.

Table 9-35 Get Prediction Candidate Function (NjxAnalyze) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL
A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_DIC_NULL A NULL pointer was specified in the argument (iwnn->dicSet).

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

iWnn Programming Manual CTR

CTR-06-0160-001-D 98  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Error Code Description

NJ_ERR_NOT_SELECT_YET NULL was specified in the argument (reading), but there are no
prior prediction conditions.

NJ_ERR_PARAM_READING_SIZE A reading string with length longer than NJ_MAX_LEN was
specified in the argument (reading).

NJ_ERR_PARAM_ILLEGAL_LIMIT An illegal numeric value was specified in the argument (option).

NJ_ERR_DIC_BROKEN

• Cannot get the location to add learning dictionary information,
user dictionary information from the learning dictionary, or user
dictionary specified in the argument (iwnn->dicSet).

• The number of registered words given in the learning
dictionary or user dictionary specified in the argument (iwnn-
>dicSet) is larger than the maximum number of registerable
words.

• The queue data inside the learning dictionary or user
dictionary specified in the argument (iwnn->dicSet) is
corrupted.

NJ_ERR_NO_PARTS_OF_SPEECH The required part-of-speech information cannot be obtained from
the rule dictionary.

NJ_ERR_DIC_TYPE_INVALID A dictionary other than that defined was set in the argument
(iwnn->dicSet).

NJ_ERR_CACHE_BROKEN The cache management area specified in the argument (iwnn-
>dicSet) has been destroyed.

NJ_ERR_PROTECTION_ERR A function that operates on learning dictionaries has performed
an operation on protected memory.

9.10 Kana-Kanji Conversion Function (NjxConversion)
This function performs single-phrase conversion or multiple phrase conversion of the specified reading
string for the specified dictionary set. If the locations of word divisions are specified, multiple phrase
conversion based on those divisions is performed.

Conversion results are stored in the conversion result storage buffer for each phrase. If the number of
phrases to be analyzed is specified, analysis is performed only up to the specified number of phrases
to be analyzed.

This API uses the following dictionaries inside the specified dictionary set (iwnn->dicSet).

• Integrated dictionary.
• User dictionary.
• Learning dictionary.
• Ancillary word dictionary.
• Compressed custom dictionary.
• Uncompressed custom dictionary.
• Rule dictionary.

The single-kanji dictionary is also used if the location of phrase divisions has been specified.

CTR iWnn Programming Manual

 2011–2013 Nintendo 99 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Code 9-10 Kana-Kanji Function (NjxConversion) Declaration

s16 NjxConversion(

 IWNN_CLASS* iwnn, // Analysis information class

 IWNN_RESULT* results, // Conversion result storage buffer

 const wchar_t* reading, // Reading string

 u8 analyzeLevel, // Number of phrases to analyze

 u8 devidePos // Phrase division position

)

Table 9-36 Kana-Kanji Function (NjxConversion) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

OUT
IWNN_RESULT*
results

Conversion result storage buffer.
Enough memory must be allocated to store the number of phrases to be
analyzed.

IN
const
wchar_t*
reading

Reading string to undergo multiple phrase conversion.
Be sure to add a terminator to the end of the string.
Do not change this value until conversion operations have ended, because
this string region is used (overwritten) internally by iWnn during kana-kanji
conversion.

IN
u8
analyzeLevel

Number of phrases to analyze.
Specify 1 or NJ_MAX_PHRASE.
Single-phrase conversion is performed if 1 is specified.
Multiple phrase conversion is performed if NJ_MAX_PHRASE is specified.
An error results if a value other than 1 or NJ_MAX_PHRASE is specified.

IN
u8
devidePos

Phrase division position.
Use when explicitly specifying where the phrase has been divided.
Specify the division position in terms of string length (using the immediately
following array element index number).
Set to 0 if phrase division positions are not being specified.

Table 9-37 Kana-Kanji Function (NjxConversion) Return Values

Return
Value Description

s16
Positive value: Number of phrases (1 or more) stored in the conversion result storage buffer.
Negative value: Error.

iWnn Programming Manual CTR

CTR-06-0160-001-D 100  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-38 Kana-Kanji Function (NjxConversion) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in an argument (iwnn).

NJ_ERR_PARAM_ILLEGAL_LEVEL

• A value other than 1 or NJ_MAX_PHRASE was set in the
argument (analyzeLevel).

• A value of 1 was set for the argument (analyzeLevel) when
a value other than 0 was set for the argument (devidePos).

NJ_ERR_DIC_BROKEN

• Cannot get the location to add learning dictionary information
or user dictionary information from the learning dictionary or
user dictionary specified in the argument (iwnn->dicSet).

• The number of registered words given in the learning
dictionary or user dictionary specified in the argument (iwnn-
>dicSet) is larger than the maximum number of registerable
words.

• The queue data inside the learning dictionary or user
dictionary specified in the argument (iwnn->dicSet) is
corrupted.

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_PARAM_READING_NULL A NULL pointer was specified in the argument (reading)

NJ_ERR_PARAM_READING_SIZE An empty character string or reading string longer than
NJ_MAX_LEN was specified in the argument (reading).

NJ_ERR_PARAM_DIVISION A value greater than the length of the specified reading string
was specified in the argument (devidePos).

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_NO_PARTS_OF_SPEECH Required part-of-speech information cannot be obtained from the
rule dictionary.

NJ_ERR_PROTECTION_ERR A function that operates on learning dictionaries has performed
an operation on protected memory.

NJ_ERR_DIC_TYPE_INVALID An unsupported dictionary was set in the argument (iwnn-
>dicSet).

9.11 Get All Candidates Function (NjxAllCandidates)
This function returns one result for the specified position out of all candidates for the specified
candidate.

An error results if this function is used in a situation where the initialize function and kana-kanji
conversion function have not already been called.

If the return value indicates that there is no candidate (return value 0), or if there is an error, undefined
values may be stored in the buffer for getting candidates (result).

CTR iWnn Programming Manual

 2011–2013 Nintendo 101 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

This API uses the following dictionaries inside the specified dictionary set (iwnn->dicSet).

• Integrated dictionary.
• Single kanji dictionary.
• User dictionary.
• Learning dictionary.
• Ancillary word dictionary.
• Compressed custom dictionary.
• Uncompressed custom dictionary.
• Rule dictionary.

Code 9-11 Get All Candidates Function (NjxAllCandidates) Declaration

s16 NjxAllCandidates(

 IWNN_CLASS* iwnn, // Analysis information class

 IWNN_RESULT* result, // Obtained candidate storage buffer

 const IWNN_RESULT* target, // Target phrase conversion results

 u16 candidateNum // Obtained candidate number

)

Table 9-39 Get All Candidates Function (NjxAllCandidates) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

OUT
IWNN_RESULT*
result

Obtained candidate storage buffer.
Enough memory to store one candidate must be allocated.

IN
const
IWNN_RESULT*
target

Target phrase conversion results.
Be sure to specify the process result structure for the phrase position for
which all candidates are to be obtained from inside the conversion result
storage buffer for the kana-kanji conversion function.
Be sure to specify NULL when getting candidates other than for the first
time (when getting the second or later candidate).
However, an error is returned if NULL is specified when getting
candidates the first time (when getting the first candidate).

IN
u16
candidateNum

Obtained candidate number (starting from 0).
Be sure to specify the index of the candidate to be obtained from all
candidates.
If a negative value is specified, or if the candidate to be obtained does
not exist (the upper limit was reached), 0 is returned.

iWnn Programming Manual CTR

CTR-06-0160-001-D 102  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-40 Get All Candidates Function (NjxAllCandidates) Return Values

Return
Value Description

s16
Negative value: Error.
Positive value: Number of candidates when getting all candidates.
0: No candidate to be obtained.

Table 9-41 Get All Candidates Function (NjxAllCandidates) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_NOT_CONVERTED This API was called when conversion has not been performed.

NJ_ERR_NO_CANDIDATA_LIST NULL was set in the argument (target) immediately after
conversion.

NJ_ERR_PARAM_RESULT_NULL NULL was set in the argument (result).

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_NO_PARTS_OF_SPEECH Required part-of-speech information cannot be obtained from the
rule dictionary.

NJ_ERR_DIC_TYPE_INVALID An unsupported dictionary was set in the argument (iwnn-
>dicSet).

NJ_ERR_DIC_BROKEN

• Cannot get the location to add learning dictionary information,
user dictionary information from the learning dictionary, or user
dictionary specified in the argument (iwnn->dicSet).

• The number of registered words given in the learning
dictionary or user dictionary specified in the argument (iwnn-
>dicSet) is larger than the maximum number of registerable
words.

• The queue data inside the learning dictionary or user
dictionary specified in the argument (iwnn->dicSet) is
corrupted.

NJ_ERR_INVALID_RESULT
Process results obtained by a function other than
NjxConversion or NjxAllCandidates were specified in the
argument (target).

9.12 Learning Function (NjxSelect)
This function performs the following operations, on the process result structures that may be specified.

• Process result structure (for learning).
Registers entries in a learning dictionary or pseudo dictionary, based on learning information in the
process result structure.

• Process result structure (for pre-confirmation information).
Sets learning information in the process result structure, as pre-confirmation information.

CTR iWnn Programming Manual

 2011–2013 Nintendo 103 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Do not specify results obtained from the delimited input function for morphological analysis to this
function. If learning of morphological analysis results is needed, use the morphological analysis
learning function.

Code 9-12 Learning Function (NjxSelect) Declaration

s16 NjxSelect(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* learningResult, // Process result structure(for

 learning)

 const IWNN_RESULT* preConfirmedResult, // Process result structure(for

 pre-confirmation information)

 u8 connect // Associative learning flag

)

Table 9-42 Learning Function (NjxSelect) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
learningResult

Process result structure (for learning).
The result of learning is not registered in the learning dictionary if NULL
is specified.

IN

const
IWNN_RESULT*
preConfirmedResul
t

Process result structure (for pre-confirmation information).
Pre-confirmation information is deleted if NULL is specified.

IN
u8
connect

Associative learning flag.
Specifies whether to perform associative learning versus pre-confirmed
candidates.
0: Do not perform associative learning.
1: Perform associative learning.

Table 9-43 Learning Function (NjxSelect) Return Values

Return
Value Description

s16
Negative value: Error.
Other: Normal exit.

iWnn Programming Manual CTR

CTR-06-0160-001-D 104  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-44 Learning Function (NjxSelect) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_N
ULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_INVALID_FLAG A value other than 0 or 1 was set in the argument (connect).

NJ_ERR_INVALID_RESULT

• Unsupported code was set for an operation on the arguments
(learningResult or preConfirmedResult).

• The dictionary from which candidates are obtained does not return
reading strings for reverse lookup results.

• The arguments (learningResult, preConfirmedResult)
represent the results of morphological analysis.

NJ_ERR_DIC_TYPE_INVALID
Unsupported code was set for the dictionary type obtained from the
word dictionary address in the arguments (learningResult,
preConfirmedResult).

NJ_ERR_DIC_BROKEN

Returned when one of the following situations occur when an
uncompressed dictionary is the target in the arguments
(learningResult, preConfirmedResult):
• The queue data to be stored given by the queue ID was destroyed.
• A reading string longer than NJ_MAX_USER_LEN was found in the

user dictionary.
• The link information when one word uses multiple keys was

destroyed.
Returned when one of the following situations occur when an
uncompressed dictionary is the target in the arguments
(learningResult, preConfirmedResult):
• The queue ID was destroyed.
• A reading string longer than NJ_MAX_USER_LEN or a candidate

string longer than NM_MAX_CANDIDATE_LEN was found in the user
dictionary.

• A reading string longer than NJ_MAX_USER_LEN or a candidate
string longer than NM_MAX_CANDIDATE_LEN was found in a
dictionary other than the user dictionary.

• The link information when one word uses multiple keys was
destroyed.

• Cannot get the location to add learning dictionary information, user
dictionary information from the learning dictionary, or user
dictionary specified in the argument (iwnn->dicSet).

• The number of registered words given in the learning dictionary or
user dictionary specified in the argument (iwnn->dicSet) is larger
than the maximum number of registerable words.

The queue data inside the learning dictionary or user dictionary
specified in the argument (iwnn->dicSet) is corrupted.

NJ_ERR_READING_TOO_LONG
The reading string length exceeds NJ_MAX_LEN when the arguments
(learningResult, preConfirmedResult) were generated by an
operation other than morphological analysis.

CTR iWnn Programming Manual

 2011–2013 Nintendo 105 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Error Code Description

NJ_ERR_PROTECTION_ERR A function that operates on learning dictionaries has performed an
operation on protected memory.

NJ_ERR_CANDIDATE_TOO_LONG
A value greater than NJ_MAX_RESULT_LEN was set for the candidate
string length in the arguments (learningResult,
preConfirmedResult).

9.13 Undo Learning Function (NjxUndo)
This function undoes learning information for the specified undo count.

It also clears pre-confirmation information.

Deleted learning information cannot be undone because old information in the learning dictionary is
constantly being deleted as learning repeats.

Code 9-13 Undo Learning Function (NjxUndo) Declaration

s16 NjxUndo(

 IWNN_CLASS* iwnn, // Analysis information class

 u16 undoCount // Undo count

)

Table 9-45 Undo Learning Function (NjxUndo) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
u16
undoCount

Count to undo.

Table 9-46 Undo Learning Function (NjxUndo) Return Values

Return
Value Description

s16
Negative value: Error.
Other: The undo count.

iWnn Programming Manual CTR

CTR-06-0160-001-D 106  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-47 Undo Learning Function (NjxUndo) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_DIC_NOT_FOUND
The dictionary specified by the argument (type) does not exist
in the dictionary set specified by the argument (iwnn-
>dicSet).

NJ_ERR_PROTECTION_ERR A function that operates on learning dictionaries has performed
an operation on protected memory.

NJ_ERR_DIC_BROKEN

• Cannot get the location to add learning dictionary
information, user dictionary information from the learning
dictionary, or user dictionary specified in the argument
(iwnn->dicSet).

• The number of registered words given in the learning
dictionary or user dictionary specified in the argument
(iwnn->dicSet) is larger than the maximum number of
registerable words.

• The queue data inside the learning dictionary or user
dictionary specified in the argument (iwnn->dicSet) is
corrupted.

9.14 Search Word Function (NjxSearchWord)
This function configures a search cursor structure used to look up the specified reading string and get
words.

To get the target word, use the dictionary search cursor structure to get the word using the get word
function (NjxGetWord).

If getting all words through dictionary lookup from a user dictionary and learning dictionary, specify an
empty string (“”) for the reading string of the word to be searched for using the dictionary search cursor
structure and specify prefix match search for the search method.

If the return value indicates that no candidate matches the search conditions (0) or an error, undefined
values may be stored in the dictionary search cursor (cursor).

Code 9-14 Search Word Function (NjxSearchWord) Declaration

s16 NjxSearchWord(

 IWNN_CURSOR* cursor, // Dictionary search cursor structure

 const IWNN_CLASS* iwnn // Analysis information class

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 107 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-48 Search Word Function (NjxSearchWord) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CURSOR*
cursor

Dictionary search cursor structure.
The target word is searched for by setting a dictionary set structure,
search conditions, a reading string, and other necessary information.
For details on the structure, see section 8.5 Dictionary Search Cursor
(IWNN_CURSOR).
An error results if NULL is specified.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

Table 9-49 Search Word Function (NjxSearchWord) Return Values

Return
Value Description

s16
Negative value: Error.
1: A candidate matching search conditions exists.
0: No candidates match search conditions.

Table 9-50 Search Word Function (NjxSearchWord) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_CURSOR_NULL NULL was specified in the argument (cursor).

NJ_ERR_PARAM_DIC_NULL NULL was specified for the dictionary set in the argument
(cursor).

NJ_ERR_PARAM_READING_NULL NULL was specified for the reading in the argument (cursor).

NJ_ERR_READING_TOO_LONG The reading string length in the argument (cursor) exceeds
NJ_MAX_LEN.

NJ_ERR_PARAM_KANJI_NULL A derived search was set for the search method in the argument
(cursor) and NULL was specified for the candidate string.

NJ_ERR_CANDIDATE_TOO_LONG The candidate string length in the argument (cursor) exceeds
NJ_MAX_RESULT_LEN.

NJ_ERR_PARAM_OPERATION An unsupported value was specified for the search method in the
argument (cursor).

NJ_ERR_PARAM_MODE An unsupported value was specified for the candidate retrieval
order in the argument (cursor).

NJ_ERR_DIC_TYPE_INVALID An unsupported dictionary was specified in the dictionary set for
the argument (cursor).

iWnn Programming Manual CTR

CTR-06-0160-001-D 108  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Error Code Description

NJ_ERR_DIC_BROKEN

• Cannot get the location to add learning dictionary information,
user dictionary information from the learning dictionary, or user
dictionary specified in the argument (iwnn->dicSet).

• The number of registered words in the learning dictionary or
user dictionary specified in the argument (iwnn->dicSet) is
larger than the maximum number of registerable words.

• The queue data inside the learning dictionary or user
dictionary specified in the argument (iwnn->dicSet) is
corrupted.

If you register a word or perform a learning operation after getting it with the dictionary search cursor
(IWNN_CURSOR), the user dictionary or learning dictionary will be updated. So you will need to get the
dictionary search cursor again.

When using the dictionaries included in this package, you cannot get all words by specifying an empty
string (“”).

9.15 Get Word Function (NjxGetWord)
This function gets words one at a time, according to the specified search conditions, based on
information in the dictionary search cursor structure obtained using the search word function.

The obtained word is stored in the process result buffer. If there is no candidate that matches the
search conditions (return value 0) or an error occurs, undefined values may be stored in process
results.

Code 9-15 Get Word Function (NjxGetWord) Declaration

s16 NjxGetWord(

 IWNN_CURSOR* cursor, // Dictionary search cursor structure

 IWNN_RESULT* result, // Process result buffer

 const IWNN_CLASS* iwnn // Analysis information class

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 109 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-51 Get Word Function (NjxGetWord) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CURSOR*
cursor

Dictionary search cursor structure.
Specifies the dictionary search cursor obtained by the get word function.
An error results if NULL is specified.

OUT
IWNN_RESULT*
result

Process result buffer.
Enough memory to store one candidate must be allocated.
An error results if NULL is specified.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

Table 9-52 Get Word Function (NjxGetWord) Return Values

Return
Value Description

s16
Negative value: Error.
0: Cannot find matching candidate.
Other: Normal exit.

Table 9-53 Get Word Function (NjxGetWord) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_CURSOR_NULL NULL was specified in the argument (cursor).

NJ_ERR_PARAM_RESULT_NULL NULL was specified in the argument (result).

NJ_ERR_DIC_TYPE_INVALID An unsupported dictionary was set for the dictionary set in the
argument (cursor).

NJ_ERR_CANNOT_GET_QUEUE

• The word search position in the argument (cursor) was
destroyed.

• Queue data inside the uncompressed dictionary specified in
the dictionary set in the argument (cursor) is corrupted.

If you register a word or perform a learning operation after getting it with the dictionary search cursor
(IWNN_CURSOR), the user dictionary or learning dictionary will be updated. So you will need to get the
dictionary search cursor again.

iWnn Programming Manual CTR

CTR-06-0160-001-D 110  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

9.16 Add Word Function (NjxAddWord)
This function adds the specified information in the add word information structure to a learnable
dictionary (user dictionary, learning dictionary, or pseudo dictionary).

If both a user dictionary and learning dictionary have been set in the dictionary set structure, the same
words are registered in both dictionaries. However, if multiple learnable dictionaries of the same type
have been set (multiple learning dictionaries or multiple user dictionaries), words are registered in the
learnable dictionary set first. An error does not result, even if no learnable dictionaries are set in the
dictionary set, but words are not registered.

Multiple instances of a word having the same reading string, candidate string, or part of speech group
cannot be registered in a user dictionary.

If a user dictionary is specified as the destination to add a word, the associative learning flag is
ignored.

Code 9-16 Add Word Function (NjxAddWord) Declaration

s16 NjxAddWord(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_WORD_INFO* word, // Word registration information structure

 u8 type, // Dictionary type

 u8 connect // Associative learning flag

)

Table 9-54 Add Word Function (NjxAddWord) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
Iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_WORD_INFO*
word

Word registration information structure.
Stores the word information to be registered.
An error results if NULL or an invalid value is specified in
IWNN_WORD_INFO.

IN
u8
type

Dictionary type to be registered.
0: Register a user dictionary.
1: Register a learning dictionary.
2: Register a pseudo dictionary.

IN
u8
connect

Associative learning flag.
This flag is enabled only when a learning dictionary is specified for
the dictionary type in which words are to be registered.
0: Do not perform associative learning with the previously registered
word.
1: Perform associative learning with the previously registered word.

CTR iWnn Programming Manual

 2011–2013 Nintendo 111 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-55 Add Word Function (NjxAddWord) Return Values

Return
Value Description

s16
Negative value: Error.
(Including cases where the candidate has the same reading string and candidate string.)
Other: Normal exit.

Table 9-56 Add Word Function (NjxAddWord) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_DIC_NULL NULL was set in the argument (iwnn->dicSet).

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_DIC_TYPE_INVALID An invalid value is set in the argument (type).

NJ_ERR_WORD_INFO_NULL NULL was set in the argument (word).

NJ_ERR_USER_READING_INVALID

• A reading string equal to or greater than NJ_MAX_LEN was
specified for a word to be registered in a learning dictionary.

• A reading string equal to or greater than NJ_MAX_USER_LEN
was specified for a word to be registered in a user dictionary.

NJ_ERR_USER_CANDIDATE_INVALID

• A candidate string equal to or greater than
NJ_MAX_RESULT_LEN was specified for a word to be
registered in a learning dictionary.

• A candidate string equal to or greater than
NJ_MAX_USER_CANDIDATE_LEN was specified for a word to
be registered in a user dictionary.

NJ_ERR_PARTS_OF_SPEECH_GROUP_I
NVALID

An unsupported value was set for the part of speech group in
the argument (word).

NJ_ERR_DIC_NOT_FOUND
The dictionary specified by the argument (type) does not exist
in the dictionary set specified by the argument (iwnn-
>dicSet).

NJ_ERR_USER_DIC_FULL
There was a specification to add a word to the user dictionary,
but the user dictionary already contains the maximum number of
words allowed.

NJ_ERR_DIC_BROKEN

• Cannot get the location to add learning dictionary information,
user dictionary information from the learning dictionary, or
user dictionary specified in the argument (iwnn->dicSet).

• The number of registered words given in the learning
dictionary or user dictionary specified in the argument (iwnn-
>dicSet) is larger than the maximum number of registerable
words.

• The queue data inside the learning dictionary or user
dictionary specified in the argument (iwnn->dicSet) is
corrupted.

iWnn Programming Manual CTR

CTR-06-0160-001-D 112  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Error Code Description

NJ_ERR_SAME_WORD There was a specification to add a word to the user dictionary,
but the same word has already been registered.

NJ_ERR_PROTECTION_ERR A function that operates on learning dictionaries has performed
an operation on protected memory.

NJ_ERR_INVALID_FLAG A value greater than 1 was specified in the argument (connect).

9.17 Delete Word Function (NjxDeleteWord)
This function deletes words using the following search results.

• Search results obtained from getting a word from a learnable dictionary (user dictionary or learning
dictionary).

• Search results obtained from getting a word from a pseudo dictionary.

An error results if process results other than those listed above are specified. An error also results if a
process result for anything other than dictionary lookup is specified.

Code 9-17 Delete Word Function (NjxDeleteWord) Declaration

s16 NjxDeleteWord(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result // Process result

)

Table 9-57 Delete Word Function (NjxDeleteWord) Arguments

Input/
Output Argument Description

IN
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Process result.
An error results if NULL is specified.

Table 9-58 Delete Word Function (NjxDeleteWord) Return Values

Return
Value Description

s16
Negative value: Error.
Other values indicate normal termination.

CTR iWnn Programming Manual

 2011–2013 Nintendo 113 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-59 Delete Word Function (NjxDeleteWord) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL
A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL NULL was specified for the argument (result).

NJ_ERR_DIC_HANDLE_NULL The dictionary handle in the argument (result) is NULL.

NJ_ERR_DIC_TYPE_INVALID The dictionary handle in the argument (result) is not that of a
learning dictionary or user dictionary.

NJ_ERR_INVALID_RESULT A process result (result) other than one generated by a
dictionary lookup was specified.

NJ_ERR_WORD_NOT_FOUND The word specified by the argument (result) has already been
deleted.

NJ_ERR_PROTECTION_ERR A function that operates on learning dictionaries has performed
an operation on protected memory.

NJ_ERR_DIC_BROKEN

• Cannot get the location to add user dictionary information from
the user dictionary specified in the argument (iwnn-
>dicSet).

• The number of registered words given in the user dictionary
specified in the argument (iwnn->dicSet) is larger than the
maximum number of registerable words.

• The queue data inside the user dictionary specified in the
argument (iwnn->dicSet) is corrupted.

9.18 Split Word Function (MmxSplitWord)
This function splits the input string into phrase units, and returns process results for the number of
phrases that result.

If the return value indicates an error, an undefined value may be stored in process results or for the
analysis end string length.

This API uses the following dictionaries inside the specified dictionary set (iwnn->dicSet).

• Integrated dictionary.
• User dictionary.
• Ancillary word dictionary.
• Rule dictionary.
• Compressed custom dictionary.
• Uncompressed custom dictionary.
• Single-kanji dictionary.

However, do not specify a custom dictionary in which parts of speech are not exactly assigned in the
dictionary set.

iWnn Programming Manual CTR

CTR-06-0160-001-D 114  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Code 9-18 Split Word Function (MmxSplitWord) Declaration

s16 MmxSplitWord(

 IWNN_CLASS* iwnn, // Analysis information class

 IWNN_RESULT* result, // Process result storage buffer

 u8* processLen, // Analysis end string length

 const wchar_t* input // Input string

)

Table 9-60 Split Word Function (MmxSplitWord) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

OUT
IWNN_RESULT*
result

Process result storage buffer.
Be sure to prepare a buffer for storing a result of the size given by the
maximum morphological analysis string length (MM_MAX_MORPHOLIZE_LEN).
An error results if NULL is specified.

OUT
u8*
processLen

The analysis end position (string length) after splitting words.
An error results if NULL is specified.

IN
const
wchar_t*
input

The input string to be split.
An error results if NULL is specified.
0 is returned if an empty string (“”) is specified.
Be sure to add a terminator at the end of the string.
Because this string is used (overwritten) internally by iWnn during
delimited input, do not change its contents until operations are complete.

Table 9-61 Split Word Function (MmxSplitWord) Return Values

Return
Value Description

s16
Negative value: Error.
0: An empty string is specified for the input string.
Other: Normal exit.

CTR iWnn Programming Manual

 2011–2013 Nintendo 115 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-62 Split Word Function (MmxSplitWord) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_READING_NULL A NULL pointer was specified in the argument (input).

NJ_ERR_PARAM_PROCESS_LEN_NULL A NULL pointer was specified in the argument (processLen).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_DIC_BROKEN

• Cannot get the location to add user dictionary information from
the user dictionary specified in the argument (iwnn-
>dicSet).

• The number of registered words given in the user dictionary
specified in the argument (iwnn->dicSet) is larger than the
maximum number of registerable words.

• The queue data inside the user dictionary specified in the
argument (iwnn->dicSet) is corrupted.

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_NO_PARTS_OF_SPEECH The required part of speech information could not be obtained
from the rule dictionary.

Get Split Word Position

The length of the input string in the process result structure (IWNN_RESULT), obtained by the split word
function (MmxSplitWord), can in turn be obtained using the MM_GET_CANDIDATE_LEN macro. In
addition, you can get the boundary between independent words and ancillary words in the process
result structure (IWNN_RESULT), using the MM_GET_STEM_LEN macro.

Table 9-63 Macros for String Length or Word Boundary

Macro Description

MM_GET_STEM_LEN(IWNN_RESULT *) Gets the length of the independent word part of the
candidate string.

MM_GET_CANDIDATE_LEN(IWNN_RESULT *) Gets the string length of the candidate string.

Depending on the specified text, phrases consisting of ancillary words only (such as “ですね” and “さ”)
may be returned. The MM_GET_STEM_LEN returns 0 in this case.

9.19 Get Part of Speech Group Function (MmxGetPartsOfSpeech)
This function returns a part of a speech group of the independent words in the process results obtained
using the split word function.

Do not specify results obtained using any function other than the delimited input function.

iWnn Programming Manual CTR

CTR-06-0160-001-D 116  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-64 Part of Speech Groups

Part of Speech Group Description Example

Part of speech group.
(MM_PARTS_OF_SPEECH_GROUP_NOUN)

Part of speech related to nouns
such as regular nouns, fixed
names, people’s names, place
names, and so forth.

子供が

Pseudo group.
(MM_PARTS_OF_SPEECH_GROUP_PSEUDO)

Pseudo words or words not found
in the dictionary. ABCDEFG です

Other.
(MM_PARTS_OF_SPEECH_GROUP_OTHER)

Parts of speech other than those
above. 動く

Code 9-19 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Declaration

s16 MmxGetPartsOfSpeech(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result // Process result

)

Table 9-65 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Split word process result.
An error results if NULL is specified.

Table 9-66 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Return Values

Return
Value Description

s16
Obtained part of speech group.
Negative value: Error.

Table 9-67 Get Part of Speech Group Function (MmxGetPartsOfSpeech) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_INVALID_RESULT The result of a process other than morphological analysis was
specified in the argument (result).

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

CTR iWnn Programming Manual

 2011–2013 Nintendo 117 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

9.20 Get Reading String for Morphological Analysis Function
(MmxGetReading)

This function returns reading strings for words having the same notation as the specified process
results. One candidate is returned at a time, in order of frequency. Only readings for specified result
phrases (independent words, or independent words and ancillary words) are returned for the reading
string. The reading string length of independent words is stored in stemLen.

Be sure not to specify process results obtained by functions other than the split word function.

Invalid values may be stored in the reading string, or reading string for independent words in the
following cases.

• When an error has occurred.
• When the reading string length exceeds NJ_MAX_LEN.
• When the reading string exceeds the reading string buffer size.
• When the candidate string exceeds NJ_MAX_RESULT_LEN.

This API uses the following dictionaries inside the specified dictionary set (iwnn->dicSet).

• Integrated dictionary.
• User dictionary.
• Ancillary word dictionary.
• Rule dictionary.
• Compressed custom dictionary.
• Uncompressed custom dictionary.
• Single-kanji dictionary.

This function cannot be used on an uncompressed custom dictionary created through conversion,
using the change dictionary type function.

Do not specify a custom dictionary for which parts of speech are not exactly assigned in the dictionary
set.

Code 9-20 Get Reading String for Morphological Analysis Function (MmxGetReading)
Declaration
s16 MmxGetReading(

 IWNN_CLASS* iwnn, // Analysis information class

 wchar_t* reading, // Reading string

 u8* stemLen, // Reading string length of independent word

 const IWNN_RESULT* result, // Process result

 u16 readingSize // Reading string buffer size

)

iWnn Programming Manual CTR

CTR-06-0160-001-D 118  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-68 Get Reading String for Morphological Analysis Function (MmxGetReading)
Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

OUT
wchar_t*
reading

Reading string storage buffer.
Prepare a wchar_t array of size NJ_MAX_LEN+NJ_TERM_SIZE.

OUT
u8*
stemLen

Reading string length of independent word.
The reading string length is not stored if a NULL pointer is specified.

IN
const
IWNN_RESULT*
result

Split word process result.
Specifies process results obtained from the split word function
(MmxSplitWord). If NULL is specified, split word process results when
getting the previous reading are used, and the next candidate is
returned.
However, an error is returned if NULL was specified when initially getting
the reading.

IN
u16
readingSize

Reading string byte size.
Enough memory to include a terminator must be allocated.

Table 9-69 Get Reading String for Morphological Analysis Function (MmxGetReading)
Return Values

Return
Value Description

s16

The length of the reading string stored in the reading string storage buffer.
0: Either there was no reading string corresponding to the specified process result, or it could not
be obtained/processed.
Negative value: Error.

CTR iWnn Programming Manual

 2011–2013 Nintendo 119 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-70 Get Reading String for Morphological Analysis Function (MmxGetReading)
Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL
A NULL pointer was specified in the argument (iwnn).

NJ_ERR_BUFFER_NOT_ENOUGH

• A NULL pointer was specified in the argument (reading).
• 0 was specified in the argument (readingSize).
• The buffer size is less than
(NJ_MAX_LEN+NJ_TERM_SIZE)*sizeof(wchar_t).

NJ_ERR_INVALID_RESULT Process results other than those of morphological analysis were
specified in the argument (result).

NJ_ERR_DIC_BROKEN

• Cannot get the location to add user dictionary information from
the user dictionary specified in the argument (iwnn-
>dicSet).

• The number of registered words given in the user dictionary
specified in the argument (iwnn->dicSet) is larger than the
maximum number of registerable words.

• The queue data inside the user dictionary specified in the
argument (iwnn->dicSet) is corrupted.

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_NO_PARTS_OF_SPEECH Cannot get required part of speech information from the rule
dictionary.

NJ_ERR_DIC_TYPE_INVALID An unsupported dictionary was specified in the argument (iwnn-
>dicSet).

NJ_ERR_NO_CANDIDATE_LIST NULL was specified in the argument (result) for the first call.

9.21 Learn by Morphological Analysis Function (MmxSelect)
This function adds words to a learning dictionary, based on the specified reading string and the
process results obtained by the split word operation.

You can limit candidate character strings, to be learned, to independent words included in process
results. Be sure to specify only strings corresponding to an independent word, for the reading string.

Do not specify results obtained using any function other than the split word function.

Code 9-21 Learn by Morphological Analysis Function (MmxSelect) Declaration

s16 MmxSelect(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result, // Process results

 const wchar_t* reading, // Reading string

 u8 independentFlag, // Independent word specification flag

 u8 connect // Associative learning flag

)

iWnn Programming Manual CTR

CTR-06-0160-001-D 120  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-71 Learn by Morphological Analysis Function (MmxSelect) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Split word process results.
An error results if NULL is specified.

IN
const wchar_t*
reading

Reading string.
Specify a string having a length of up to NJ_MAX_LEN+NJ_TERM_SIZE.
An error results if NULL or an empty string (“”) is specified.

IN
u8
independentFlag

Independent word specification flag.
0: Learn process results by phrase.
1: Learn only independent words in process results.
Other: Results in an error.

IN
u8
connect

Associative learning flag.
Specifies whether to perform associative learning with pre-confirmed
candidates.
0: Do not perform associative learning.
1: Perform associative learning.
Other: Results in an error.

Table 9-72 Learn by Morphological Analysis Function (MmxSelect) Return Values

Return
Value Description

s16
Negative value: Error.
Other: Normal exit.

Table 9-73 Learn by Morphological Analysis Function (MmxSelect) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL
A NULL pointer was specified in the argument (iwnn).

NJ_ERR_DIC_NOT_FOUND A learning dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_PARAM_READING_NULL
• A NULL pointer was specified in the argument (reading).
• An empty string was specified in the argument (reading).

NJ_ERR_READING_TOO_LONG A string length longer than NJ_MAX_LEN was specified in the
argument (reading).

CTR iWnn Programming Manual

 2011–2013 Nintendo 121 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Error Code Description

NJ_ERR_INVALID_FLAG
• A value other than 0 or 1 was specified for the argument

(independentFlag).
• A value other than 0 or 1 was set in the argument (connect).

NJ_ERR_INVALID_RESULT

• Unsupported code was set for operations on the argument
(result).

• Process results other than those of morphological analysis
were specified in the arguments (result).

• A value of 1 was set in the argument (independentFlag),
but the arguments (result) represents phrase information for
ancillary words only.

• The reading string length of the argument (result) is 0.

NJ_ERR_DIC_BROKEN

Returned when one of the following situations occur, when an
uncompressed dictionary is the target in the arguments
(learningResult and preConfirmedResult):
• The queue data to be stored given by the queue ID is

destroyed.
• A reading string longer than NJ_MAX_USER_LEN is found in

the user dictionary.
• The link information, when one word uses multiple keys, is

destroyed.
Returned when one of the following situations occur, when an
uncompressed dictionary is the target in the arguments
(learningResult and preConfirmedResult):
• The queue ID (result->word.stem.location.current) is

destroyed.
• A reading string longer than NJ_MAX_USER_LEN, or a

candidate string longer than NM_MAX_CANDIDATE_LEN is
found in the user dictionary.

• A reading string longer than NJ_MAX_USER_LEN, or a
candidate string longer than NM_MAX_CANDIDATE_LEN is
found in a dictionary, other than a user dictionary.

• The link information, when one word uses multiple keys, is
destroyed.

Cannot get the location to add user dictionary information from
the user dictionary specified in the argument (iwnn->dicSet).
The number of registered words given in the user dictionary
specified in the argument (iwnn->dicSet) is larger than the
maximum number of registerable words.
The queue data inside the user dictionary specified in the
argument (iwnn->dicSet) is corrupted.

NJ_ERR_CANDIDATE_TOO_LONG A value greater than NJ_MAX_RESULT_LEN was specified in the
argument (result).

NJ_ERR_DIC_NOT_FOUND A learning dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_PROTECTION_ERR A function that operates on learning dictionaries has performed
an operation on protected memory.

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

iWnn Programming Manual CTR

CTR-06-0160-001-D 122  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

9.22 Set Options Function (NjxSetOption)
This function sets operational parameters for iWnn.

Do not make settings during prediction, kana-kanji conversion, or morphological analysis.

For details on which options can be set, see 8.8 Option Settings (IWNN_OPTION).

Code 9-22 Option Settings Function (NjxSetOption) Declaration

s16 NjxSetOption(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_OPTION* option // Option settings

)

Table 9-74 Option Settings Function (NjxSetOption) Arguments

Input/
Output Argument Description

IN
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_OPTION*
option

Option settings.
The specified setting is stored in the analysis information class.
The default value is set in the analysis information class, if NULL is
specified.
Note: Option setting (default value).
Number of candidates to automatically start multiple phrase conversion:
NJ_MAX_CANDIDATE.

Table 9-75 Option Settings Function (NjxSetOption) Return Values

Return
Value Description

s16
Negative value: Error.
Other: Normal exit.

Table 9-76 Option Settings Function (NjxSetOption) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

9.23 Set State Function (NjxSetState)
This function sets state parameters for situational adaptive prediction.

Do not make settings during prediction, kana-kanji conversion, or morphological analysis.

CTR iWnn Programming Manual

 2011–2013 Nintendo 123 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Code 9-23 Set State Function (NjxSetState) Declaration

s16 NjxSetState(

 IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_STATE* state // State setting

)

Table 9-77 Set State Function (NjxSetState) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_STATE*
state

State setting.
If NULL is specified, the default value (0) is set for all categories.
For details on settings, see section 8.10 State Setting
(IWNN_STATE).

Table 9-78 Set State Function (NjxSetState) Return Values

Return
Value Description

s16
Negative value: Error.
Other: Normal exit.

Table 9-79 Set State Function (NjxSetState) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_INVALID_STATE A setting outside the allowable range was made for the
bias value in the argument (state).

9.24 Get State Setting Function (NjxGetState)
This function returns the current state setting parameter, maintained internally by iWnn.

Code 9-24 Get State Setting Function (NjxGetState) Declaration

s16 NjxGetState(

 IWNN_CLASS* iwnn, // Analysis information class

 IWNN_STATE* state // State setting

)

iWnn Programming Manual CTR

CTR-06-0160-001-D 124  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-80 Get State Setting Function (NjxGetState) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

OUT
IWNN_STATE*
state

状況設定
Buffer storing the state setting.
An error results if NULL is specified.
For details on settings, see section 8.10 State Setting (IWNN_STATE).

Table 9-81 Get State Setting Function (NjxGetState) Return Values

Return
Value Description

s16
Negative value: Error.
Other: Normal exit.

Table 9-82 Get State Setting Function (NjxGetState) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_STATE_NULL A NULL pointer was specified in the argument (state).

9.25 Get Word Information Function (NjxGetWordInfo)
This function gets information used to add words from the process result structure.

This function is used when you want to get word information (IWNN_WORD_INFO), required by the add
word function (NjxAddWord), from the results (IWNN_RESULT) of the search word, prediction, or
conversion processes.

Code 9-25 Get Word Information Function (NjxGetWordInfo) Declaration

s16 NjxGetWordInfo(

 IWNN_WORD_INFO* info, // Word information

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result // Process result structure

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 125 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-83 Get Word Information Function (NjxGetWordInfo) Arguments

Input/
Output Argument Description

OUT
IWNN_WORD_INFO*
info

Word information.
Stores information required to register words extracted from the process
result structure (result).

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Process result structure.
Specifies results obtained from search, conversion, and other
processes.

Table 9-84 Get Word Information Function (NjxGetWordInfo) Return Values

Return
Value Description

s16
Negative value: Error.
Other: Normal exit.

iWnn Programming Manual CTR

CTR-06-0160-001-D 126  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-85 Get Word Information Function (NjxGetWordInfo) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_WORD_INFO_NULL A NULL pointer was specified in the argument (info).

NJ_ERR_INVALID_RESULT

• Unsupported code was set for operations on the argument
(result).

• The dictionary to get candidates from did not return a reading
string for reverse lookup results.

NJ_ERR_DIC_TYPE_INVALID
Unsupported code was set for the dictionary type obtained from
the single-word dictionary address given by the argument
(result).

NJ_ERR_DIC_BROKEN

Returned when one of the following situations occur, when an
uncompressed dictionary is the target in the argument (result):
• The queue data to be stored, given by the queue ID, is

destroyed.
• A reading string longer than NJ_MAX_USER_LEN is found in

the user dictionary.
• The link information, when one word uses multiple keys, is

destroyed.

NJ_ERR_READING_TOO_LONG The reading string length in the argument (result) exceeds
NJ_MAX_LEN.

NJ_ERR_CANDIDATE_TOO_LONG The candidate string length in the argument (result) exceeds
NJ_MAX_RESULT_LEN.

9.26 Get No Conversion Candidates Function (NjxGetStrokeWord)
This function generates information for candidates that have the same notation as the reading.

If you directly confirm an input string without performing conversion operations (NjxConversion,
NjxAnalyze, or NjxAllCandidates), better relationship prediction candidates can be obtained by
creating no conversion candidates with this function and performing word learning.

In order to handle phrase conversion internally, the same dictionary used at time of phrase conversion
is required.

Code 9-26 Get No Conversion Candidate Function (NjxGetStrokeWord) Declaration

s16 NjxGetStrokeWord(

 IWNN_CLASS* iwnn, // Analysis information class

 IWNN_RESULT* result, // Conversion result storage buffer

 const wchar_t* reading // reading string

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 127 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-86 Get No Conversion Candidate Function (NjxGetStrokeWord) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

OUT
IWNN_RESULT*
Result

Conversion result storage buffer.
Enough memory to store one phrase must be allocated.

IN
const
wchar_t*
reading

Reading string to perform no conversion.
Be sure to add a terminator to the end of the string.
Do not change this value until conversion operations have ended, because
this string region is used (overwritten) internally by iWnn during kana-kanji
conversion.

Table 9-87 Get No Conversion Candidate Function (NjxGetStrokeWord) Return Values

Return
Value Description

s16
1: Number of phrases stored in the conversion result storage buffer (=1).
Negative value: Error.

Table 9-88 Get No Conversion Candidate Function (NjxGetStrokeWord) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_DIC_BROKEN

• Cannot get the location to add learning dictionary information
or user dictionary information from the learning dictionary or
user dictionary specified in the argument (iwnn->dicSet).

• The number of registered words given in the learning
dictionary or user dictionary specified in the argument (iwnn-
>dicSet) is larger than the maximum number of registerable
words.

• The queue data inside the learning dictionary or user
dictionary specified in the argument (iwnn->dicSet) is
corrupted.

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_PARAM_READING_NULL A NULL pointer was specified in the argument (reading).

NJ_ERR_PARAM_READING_SIZE An empty character string or reading string longer than
NJ_MAX_LEN was specified in the argument (reading).

NJ_ERR_NO_RULE_DIC A rule dictionary is not set in the argument (iwnn->dicSet).

NJ_ERR_NO_PARTS_OF_SPEECH Cannot get the required part of speech information from the rule
dictionary.

NJ_ERR_DIC_TYPE_INVALID An unsupported dictionary was specified in the argument (iwnn-
>dicSet).

iWnn Programming Manual CTR

CTR-06-0160-001-D 128  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

9.27 Merge Candidate Lists Function (NjxMergeWordList)
This function creates a single candidate list by combining multiple candidate lists.

A list with duplications removed can be created by gathering together words that have the same
notation.

In addition, you can easily change the order of candidates in the list, because you can select the
merge method to use for candidates with the same notation.

This function is used, for example, when creating a candidate list where pseudo candidates must be
located at the end.

If an abnormal termination occurs, the contents of the candidate list (wordList) are undefined.

Code 9-27 Merge Candidate Lists Function (NjxMergeWordList) Declaration

s16 NjxMergeWordList(

 IWNN_MERGE_RESULT* wordList, // Candidate list

 s32 listMax, // Maximum number of storable

 candidates

 u32 mode, // Merge method

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result, // Candidate array to be merged

 u32 num // Number of candidates to be merged

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 129 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-89 Merge Candidate Lists Function (NjxMergeWordList) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_MERGE_RESULT*
wordList

Candidate list.
Memory region for storing the list order.
Because pointers to iwnn and result are maintained internally, the
memory pointed to by iWnn and result must not be written to or freed
until use of the candidate list has ended.

IN
s32
listMax

Maximum number of storable candidates.
Represents the maximum number of candidates that can be stored in
wordList.
A specification greater than NJ_MAX_CANDIDATE cannot be made.

IN
u32
mode

Merge method.
NJ_MERGE_INIT: Clears the list and then adds candidates. (Use
before creating the first candidate list.)
NJ_MERGE_NOT_EXIST: Adds only candidates that do not exist in the
candidate list, to the end of the list. Any candidates beyond the
maximum number of storable candidates are not added.
NJ_MERGE_NOT_EXIST_FORCE: Adds only candidates that do not
exist in the candidate list, to the end of the list. Any candidates
beyond the maximum number of storable candidates are added, by
deleting candidates that already exist in the candidate list from the
end of the list.
NJ_MERGE_FORCE: Adds all candidates in result to the end of the list.
Candidates that do not exist in the candidate list are moved to the
end. Any candidates beyond the maximum number of storable
candidates are added by deleting candidates that already exist in the
candidate list from the end of the list.

IN
const IWNN_CLASS*
iwnn

Analysis information class.
Used to get word information from result.

IN
const IWNN_RESULT*
result

Candidate array to be merged.
The candidate array to be added to the candidate list.
This array must not include duplicate candidates.

IN
u32
num

Number of candidates to be merged.
The number of candidates to be merged with the candidate list.
If a value larger than list_num is specified, operations continue as if
list_num was specified.

Table 9-90 Merge Candidate Lists Function (NjxMergeWordList) Return Values

Return
Value Description

s16
The number of candidates stored in the candidate list.
Negative value: Error.

iWnn Programming Manual CTR

CTR-06-0160-001-D 130  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-91 Merge Candidate Lists Function (NjxMergeWordList) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (wordList,
result).

NJ_ERR_PARAM_MODE An invalid value was specified in the argument (mode).

NJ_ERR_BUFFER_NOT_ENOUGH A value greater than NJ_MAX_CANDIDATE was specified in the
argument (listMax).

NJ_ERR_INVALID_RESULT

Candidate information specified in the argument (result) is
corrupted.
Or, candidate information registered in the argument (wordlist)
is corrupted.

9.28 Manage Learning Dictionary Function (NjxManageLearnDic)
This function performs various operations on learning dictionaries. It is used when merging learning
dictionaries.

Code 9-28 Manage Learning Dictionary Operation Function (NjxManageLearnDic)
Declaration
s16 NjxManageLearnDic(

 const IWNN_CLASS* iwnn, // Analysis information class

 u32 operation // Operation type

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 131 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-92 Manage Learning Dictionary Operation Function (NjxManageLearnDic)
Arguments

Input/
Output Argument Description

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
The learning dictionary registered in the dictionary set represented by this
structure is the target of operations.

IN
u32
operation

Operation type.
Specifies the operation to be performed on the learning dictionary.
NJ_MLD_OPERATION_COMMIT:
Records (commits) word registration range at that time.
The commit range is protected from being written by functions, such as the
learning function.
NJ_MLD_OPERATION_COMMIT_TO_TOP:
Words added after the previous commit position are moved ahead of the
previous commit range and re-committed.
NJ_MLD_OPERATION_COMMIT_CANCEL:
Deletes words added after the previous commit position.
NJ_MLD_OPERATION_GET_SPACE:
Gets the maximum number of candidates that can be registered outside the
commit range.

Table 9-93 Manage Learning Dictionary Operation Function (NjxManageLearnDic) Return
Values

Return
Value Description

s16

Negative value: Error.
The return values for normal termination vary depending on the operation type.
NJ_MLD_OPERATION_GET_SPACE: The maximum number of candidates that can be registered.
Other cases: 0

iWnn Programming Manual CTR

CTR-06-0160-001-D 132  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-94 Manage Learning Dictionary Operation Function (NjxManageLearnDic) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_MODE An illegal value was specified in the argument (operation).

NJ_ERR_DIC_BROKEN Dictionary corruption detected.

NJ_ERR_DIC_NOT_FOUND The learning dictionary specified by the argument
(iwnn->dicSet) does not exist in the dictionary set.

The order (oldest to newest) in which words were added (learned) by the learning dictionary is
recorded. The newer the candidate, the higher the priority level (frequency level). When adding words
from another learning dictionary to the learning dictionary currently being used, you can treat added
words as candidates older than (having lower priority than) words already registered by using the
NJ_MLD_OPERATION_COMMIT_TO_TOP operation.

Table 9-95 Learning Dictionary Operations

Learning Dictionary Contents Operation:

Old → → New

Already Learned
Area (A) (Empty)

NJ_MLD_OPERATION_COMMIT
Commits the Already Learned Area.

Already Learned
Area (A)

Added Candidates
(B)

Registers candidates in a different learning dictionary using
the add word or other function.

Added Candidates
(B)

Already Learned Area
(A)

NJ_MLD_OPERATION_COMMIT_TO_TOP
Moves added Candidates (B) in front of the Already
Learned Area (A).
Both areas (B) and (A) are redefined as the committed area
at this time.

The committed range is protected from being over-written by the add/delete word functions and the
learning function. If the available memory outside the commit range is insufficient, the add word
function and learning function return an error.

The commit range specification can be canceled by executing NJ_MLD_OPERATION_COMMIT_CANCEL
or executing the initialization API (NjxInit).

9.29 Get Additional Information String Function
(NjxGetAdditionalInfo)

This function is used to retrieve the additional information string of candidates from the process result
structure.

If the return value indicates an error, undefined values may be stored in the buffer for storing the
additional information string (buf).

CTR iWnn Programming Manual

 2011–2013 Nintendo 133 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Code 9-29 Get Additional Information String Function (NjxGetAdditionalInfo)
Declaration
s32 NjxGetAdditionalInfo (

 wchar_t* buf, // Buffer for storing the obtained

additional

 information string

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_RESULT* result, // Process result structure

 s8 index, // Index of the additional information to be

 obtained

 u32 size // Buffer size

)

Table 9-96 Get Additional Information String Function (NjxGetAdditionalInfo)
Arguments

Input/
Output Argument Description

OUT
wchar_t*
buf

Buffer for storing the obtained additional information string.
Allocates a buffer and specifies a pointer.
For process results that include learnable additional information, allocate
a wchar_t array having the size given by NJ_MAX_ADDITIONAL_LEN +
NJ_TERM_SIZE.
For processing results that include unlearnable additional information,
contact Nintendo (support@noa.com) regarding the required array size.
A maximum of 65,536 Bytes may be required.
(For information on whether additional information can be learned, see
section 8.2 Dictionary Sets (IWNN_DIC_SET, IWNN_DIC_INFO, and
IWNN_FLASH_DIC_INFO).)
An error results if NULL is specified.

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_RESULT*
result

Process result structure.
An error results if NULL is specified.

IN
s8
index

Index of the additional information to be obtained.
Specifies the index of the additional information to be obtained.
Specify a value from 0 to the maximum number of additional information
entries that can be mounted (NJ_MAX_ADDITIONAL_INFO).

IN
u32
size

Byte size of the buffer storing the additional information string.
Specify the size, including the string terminator, in terms of number of
bytes.

mailto:support@noa.com

iWnn Programming Manual CTR

CTR-06-0160-001-D 134  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-97 Get Additional Information String Function (NjxGetAdditionalInfo) Return
Values

Return
Value Description

s32
String length of the obtained string. (Not including the terminator.)
Negative value: Error.

Table 9-98 Get Additional Information String Function (NjxGetAdditionalInfo) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL
A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_RESULT_NULL A NULL pointer was specified in the argument (result).

NJ_ERR_PARAM_INDEX_INVALID

The maximum number of additional information entries is
mounted in the argument (index).
A number of entries greater than NJ_MAX_ADDITIONAL_INFO
was specified.

NJ_ERR_BUFFER_NOT_ENOUGH

A NULL pointer was specified in the argument (buf).
0 was specified in the argument (size).
The additional information string length in the argument (result) is
longer than the argument (size).

NJ_ERR_INVALID_RESULT Unsupported code was set for operations on the argument
(result).

9.30 Check Additional Information Function
(NjxCheckAdditionalInfo)

This function checks whether the specified additional information region corresponds to the dictionary
handle.

If additional information is included in the dictionary set, this function is used to check if the additional
information corresponds correctly with the dictionary handle. In the case of user dictionaries and
learning dictionaries, this function performs a check of additional information equivalent to that made
by the check dictionary function (NjxCheckDic).

If an error is returned for the check made by this function, it indicates the dictionary handle does not
correspond correctly with additional information, so be sure not to use them as a pair.

Code 9-30 Check Additional Information Function (NjxCheckAdditionalInfo)
Declaration
s16 NjxCheckAdditionalInfo(

 IWNN_CLASS* iwnn, // Analysis information class

 u8 dicType, // Dictionary handle type

 const IWNN_DIC_HANDLE handle, // Dictionary handle

CTR iWnn Programming Manual

 2011–2013 Nintendo 135 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

 const void* additionalInfo, // Additional information region

 u32 size // Additional information region size

)

Table 9-99 Check Additional Information Function (NjxCheckAdditionalInfo)
Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
u8
dicType

Dictionary handle type of the dictionary handle to be checked.

IN
const
IWNN_DIC_HANDLE
handle

Dictionary handle.
Stores the handle of the dictionary corresponding to the additional
information region to be specified.
An error results if NULL is specified.
If a dictionary handle that does not correspond to the additional
information region is specified, this function returns 0 (the check is
not necessary).

IN
const void*
additionalInfo

Additional information region.
Stores the start pointer to the additional information region.
An error results if NULL is specified.

IN
u32
size

Additional information region size.
Stores the size of the region specified in additionalInfo.

Table 9-100 Check Additional Information Function (NjxCheckAdditionalInfo) Return
Values

Return
Value Description

s16
Negative value: Error.
1: Normal exit.
0: The check is not necessary.

iWnn Programming Manual CTR

CTR-06-0160-001-D 136  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-101 Check Additional Information Function (NjxCheckAdditionalInfo) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_DIC_NULL A NULL pointer was specified in the argument (handle).

NJ_ERR_PARAM_ADD_INFO_NULL A NULL pointer was specified in the argument
(additionalInfo).

NJ_ERR_PARAM_ ADD_INFO
_INVALID_SIZE

• 0 was specified in the argument (size).
• Cannot verify the integrity of the size maintained in the

argument (additionalInfo) with the argument (size).

NJ_ERR_BUFFER_NOT_ENOUGH A value smaller than the size required for the additional
information region was specified in the argument (size).

NJ_ERR_FORMAT_INVALID

• An invalid area of memory was specified in the argument
(additionalInfo).

• Learnable additional information was specified in the
argument (additionalInfo), and the maximum additional
information size stored in the argument (additionalInfo)
is greater than NJ_MAX_ADDITIONAL_LEN.

9.31 Get FLASH Dictionary Cache Size Function
(NjxGetFlashDicCacheSize)

This function gets the cache size required by the FLASH dictionary.

Code 9-31 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize)
Declaration
s16 NjxGetFlashDicCacheSize(

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_FILE* fileStream // Dictionary file pointer

)

Table 9-102 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize)
Arguments

Input/
Output Argument Description

IN
const
IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const
IWNN_FILE*
fileStream

Dictionary file pointer.
Specifies the dictionary file pointer for which to get the cache size.
An error results if NULL is specified.

CTR iWnn Programming Manual

 2011–2013 Nintendo 137 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 9-103 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize)
Return Values

Return
Value Description

s16
Negative value: Error.
0 or higher: The cache size.

Table 9-104 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize)
Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_STREAM_NULL A NULL pointer was specified in the argument (fileStream).

NJ_ERR_PARAM_TYPE_INVALID A dictionary file pointer, other than that for a FLASH dictionary,
was specified.

NJ_ERR_STREAM_SEEK_ERR An error was generated, by the SEEK function, that used the file
pointer.

NJ_ERR_STREAM_READ_ERR An error was generated, by the READ function that used the file
pointer.

NJ_ERR_FORMAT_INVALID An invalid dictionary file pointer was specified.

9.32 Set FLASH Dictionary Information Function
(NjxSetFlashDicInfo)

This function sets information required by the FLASH dictionary, in a FLASH dictionary information
structure.

Code 9-32 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo)
Declaration
s16 NjxSetFlashDicInfo(

 IWNN_FLASH_DIC_INFO* flashDicInfo, // FLASH dictionary information

 const IWNN_CLASS* iwnn, // Analysis information class

 const IWNN_FILE* fileStream, // Dictionary file pointer

 const u8* cacheArea, // Cache region

 u32 cacheSize // Cache region size

)

iWnn Programming Manual CTR

CTR-06-0160-001-D 138  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 9-105 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo)
Arguments

Input/
Output Argument Description

OUT
IWNN_FLASH_DIC_INF
O*
flashDicInfo

FLASH dictionary information.
Stores the dictionary file pointer and cache region, required by the
FLASH dictionary.
An error results if NULL is specified.

IN
const IWNN_CLASS*
iwnn

Analysis information class.
An error results if NULL is specified.

IN
const IWNN_FILE*
fileStream

Dictionary file pointer.
Stores the dictionary file pointer corresponding to the cache region.
An error results if NULL is specified.

IN
const u8*
cacheArea

Cache region.
Stores the start pointer to the cache region.
An error results if NULL is specified.

IN
u32
cacheSize

Cache region size.
Stores the size of the region specified in cacheArea.

Table 9-106 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo) Return
Values

Return
Value Description

s16
Negative value: Error.
0: Normal exit.

Table 9-107 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo) Errors

Error Code Description

NJ_ERR_PARAM_ENVIRONMENT_NULL A NULL pointer was specified in the argument (iwnn).

NJ_ERR_PARAM_STREAM_NULL A NULL pointer was specified in the argument (fileStream).

NJ_ERR_PARAM_NULL A NULL pointer was specified in the argument (flashDicInfo
or cacheArea).

NJ_ERR_PARAM_TYPE_INVALID A dictionary file pointer that does not represent a FLASH
dictionary was specified.

NJ_ERR_STREAM_SEEK_ERR An error was generated, by the SEEK function, that used the file
pointer.

NJ_ERR_STREAM_READ_ERR An error was generated, by the READ function that used the file
pointer.

NJ_ERR_FORMAT_INVALID An invalid dictionary file pointer was specified.

CTR iWnn Programming Manual

 2011–2013 Nintendo 139 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

10 Errors
The following errors, generated internally by iWnn, are returned as the return values of functions. Error
values are defined in mw\iwnn\engine\nj_err.h.

A defined constant representing the cause of the error can be retrieved from the error value. Get the
cause of error by specifying the error value to the following defined macro.

 NJ_GET_ERR_CODE(error_value)

Table 10-1 Argument Errors Caused by the Application

Cause of Error Description and Resolution

NJ_ERR_PARAM_ENVIRONMENT_NULL NULL was specified for the analysis information class.

NJ_ERR_PARAM_DIC_NULL NULL was specified for the dictionary set.

NJ_ERR_PARAM_READING_NULL NULL was specified for the reading string.

NJ_ERR_PARAM_RESULT_NULL NULL was specified for the result storage buffer.

NJ_ERR_PARAM_PROCESS_LEN_NULL A NULL pointer was specified for the analysis end string
length storage buffer.

NJ_ERR_PARAM_KANJI_NULL NULL was specified for the kanji string.

NJ_ERR_PARAM_CURSOR_NULL NULL was specified for the cursor.

NJ_ERR_DIC_HANDLE_NULL NULL was specified for the dictionary handle.

NJ_ERR_PARAM_READING_SIZE
An invalid reading string size was specified.
Verify that the specified string is an empty string or exceeds
NJ_MAX_LEN in length.

NJ_ERR_PARAM_DIVISION
An invalid division position was specified.
Verify that the division position does not exceed the length
of the specified string.

NJ_ERR_PARAM_ILLEGAL_LEVEL
An illegal number of phrases for analysis was specified.
Verify that the number of phrases to analyze is 1 or
NJ_MAX_LEN.

NJ_ERR_PARAM_ILLEGAL_LIMIT

An illegal maximum number of prediction candidates or
learning candidates was specified.
Verify that the number of prediction candidates to get is
within legal limits.

NJ_ERR_PARAM_OPERATION
An illegal search method was specified.
Verify that a prefix match search, complete match search, or
derived search is specified for the search method.

NJ_ERR_PARAM_MODE
An invalid search candidate retrieval order was specified.
Verify that frequency order or reading order is specified for
the retrieval order.

iWnn Programming Manual CTR

CTR-06-0160-001-D 140  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Cause of Error Description and Resolution

NJ_ERR_PARAM_TYPE_INVALID An unsupported type was specified.

NJ_ERR_DIC_TYPE_INVALID

An invalid dictionary type was specified.
Verify that there is a mistake in the specified dictionary type.
The dictionary type inside the dictionary storing the
dictionary set structure may also be corrupted.

NJ_ERR_DIC_NOT_FOUND
Cannot find target dictionary.
Verify that a dictionary handle corresponding to the specified
dictionary type is stored in the dictionary set structure.

NJ_ERR_READING_TOO_LONG A reading string longer than NJ_MAX_LEN was specified.

NJ_ERR_NO_RULE_DIC
A rule dictionary was not specified.
Be sure to store a dictionary handle for a rule dictionary in
the dictionary set structure.

NJ_ERR_NO_CANDIDATE_LIST

There is no all candidate list.
Make sure that NULL is not specified in the process result
for the target phrase, when getting all candidates the first
time.
If getting all candidates for the target phrase, specify the
process result the first time, and specify NULL after the first
time.

NJ_ERR_AREA_SIZE_INVALID An invalid dictionary size was specified.

NJ_ERR_BUFFER_NOT_ENOUGH
The buffer size is insufficient.
Increase the specified buffer size and verify that process
results can be obtained.

NJ_ERR_PARTS_OF_SPEECH_GROUP_INVALID An invalid part of speech group was specified.

NJ_ERR_CREATE_TYPE_INVALID
An invalid create dictionary type was specified.
Verify that a user dictionary or learning dictionary has been
specified for the dictionary type.

NJ_ERR_INVALID_FLAG
An invalid flag was specified.
Verify that a 1 or 0 was specified for the associative learning
flag.

NJ_ERR_INVALID_RESULT
The specified process results are corrupted.
Verify that the process result structure obtained by one of
the various functions has been changed.

NJ_ERR_NOT_CONVERTED

The get all candidates function was called before using the
kana-kanji conversion function.
Be sure to use the kana-kanji conversion function before
getting all candidates.

NJ_ERR_NOT_SELECT_YET

There is no pre-confirmation information.
Be sure not to specify an empty string for the reading string,
when using the get prediction candidate function for the first
time.

NJ_ERR_WORD_INFO_NULL NULL was specified for word information.

CTR iWnn Programming Manual

 2011–2013 Nintendo 141 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Cause of Error Description and Resolution

NJ_ERR_USER_DIC_FULL The user dictionary is full.

NJ_ERR_SAME_WORD The same word is already registered in the user dictionary.

NJ_ERR_USER_READING_INVALID

An invalid reading string was specified when adding a word.
Check if the reading string given for word information is
NULL or an empty string.
Check whether the string length exceeds NJ_MAX_LEN
(learning dictionary) or NJ_MAX_USER_LEN (user
dictionary).

NJ_ERR_USER_CANDIDATE_INVALID

An invalid candidate was specified when adding words.
Check if the candidate string given for word information is
NULL or an empty string.
Check whether the string length exceeds
NJ_MAX_RESULT_LEN (learning dictionary) or
NJ_MAX_USER_CANDIDATE_LEN (user dictionary).

NJ_ERR_WORD_NOT_FOUND
The word may already be deleted.
Perform a word search and try again.

NJ_ERR_DIC_VERSION_INVALID An older version dictionary (V1.11 or earlier) was specified
to the change dictionary type function.

NJ_ERR_CACHE_BROKEN Be sure to initialize the cache management region, because
it is corrupted.

NJ_ERR_PARAM_INDEX_INVALID
An additional information index greater than or equal to the
maximum additional information mount count
(NJ_MAX_ADDITIONAL_INFO) was specified.

NJ_ERR_PARAM_ADD_INFO_INVALID_SIZE
Zero, or a value that does not match the one stored in the
additional information region, was specified for the
additional information region size.

NJ_ERR_PARAM_NULL
A NULL pointer was specified in an argument.
Check arguments.

NJ_ERR_STREAM_SEEK_ERR
An error was generated, by the SEEK function, that used the
file pointer.
Verify that the file pointer value is correct.

NJ_ERR_STREAM_READ_ERR
An error was generated, by the READ function that used the
file pointer.
Verify that the file pointer value is correct.

Table 10-2 Errors Requiring a Change to the Environment

Cause of Error Description and Resolution

NJ_ERR_CANDIDATE_TOO_LONG
There are candidates longer than NJ_MAX_RESULT_LEN.
Either increase the value of NJ_MAX_RESULT_LEN or delete candidates
longer than NJ_MAX_RESULT_LEN from the dictionary.

iWnn Programming Manual CTR

CTR-06-0160-001-D 142  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 10-3 Errors Requiring a Dictionary to be Checked or Created

Cause of Error Description and Resolution

NJ_ERR_NO_PARTS_OF_SPEECH
Cannot get part of speech number for the conversion process.
Use the check dictionary API to check the integrity of each dictionary.

NJ_ERR_FORMAT_INVALID
The dictionary is corrupted.
Use the check dictionary API to check the integrity of each dictionary.

NJ_ERR_CANNOT_GET_QUEUE
Cannot get word information.
Recreate the corrupted user dictionary or learning dictionary, using the
create dictionary function.

NJ_ERR_DIC_BROKEN

The dictionary is corrupted.
Be sure to perform an integrity check on each dictionary, using the check
dictionary function.
Also, be sure to restore the dictionary if it is a user dictionary or learning
dictionary.

NJ_ERR_CANNOT_RESTORE
Cannot restore dictionary.
Re-create the corrupted user dictionary or learning dictionary using the
create dictionary function.

CTR iWnn Programming Manual

 2011–2013 Nintendo 143 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

11 Pseudo Dictionaries
11.1 Overview

Under iWnn, in addition to normal dictionaries created as data files (such as a standard dictionary), you
can treat a program module that meets dictionary interface specifications as a pseudo dictionary.

With a standard dictionary, you must overwrite data in the dictionary file in order to change words
registered in it, but with a pseudo dictionary you can change stored words dynamically. Also, there is a
limit on the number of words that can be registered in a standard dictionary, but because a pseudo
dictionary is a program, an unlimited number of words can be mechanically generated.

Table 11-1 Pseudo Dictionary Examples

Type of Pseudo
Dictionary Description

Pseudo Dictionary for
Katakana Conversion

Converts Hiragana into Katakana.
For example, “う゛ぁいおりん” is converted to “ヴァイオリン”.

Pseudo Dictionary for
Expressing Numbers

Converts number readings into numeric characters. (Used for conversion.)
For example, “にせんろっぴゃく” is converted into “2600”.
Converts numeric characters into a reading. (Used for morphological analysis.)
For example, “12/20” is converted into “じゅうにがつはつか”.

Pseudo Dictionary for
Address Books

Accesses the address book database built into a mobile telephone, and uses mail
addresses, telephone numbers, and the kanji notation for names as conversion
candidates based on name readings.

Pseudo Dictionary for
Relative Dates

Generates conversion candidates using the terminal clock.
For example, “きょう” is converted into “2007 年 11 月 11 日” and
 “いま” is converted into “9: 00“.

Pseudo Dictionary for
Calculators

Entered formulas are converted into conversion candidates, using the calculated
result.
For example, “120*2” is converted into “240”.

Pseudo Dictionary for
Numeric Relations

Generates relationship prediction candidates corresponding to the number just
confirmed.
For example,
 “12” results in candidates “時”, “分”, ”月”, ”週”, “日”.
 “ 24” results in candidates “時”, “分”, “週”, “日”.
 “30” results in candidates “分”, “週”, “日”.

With Advanced Wnn, candidates that must be created dynamically are created by a pseudo candidate
process inside the engine. But with iWnn, such candidates are provided using pseudo dictionaries,
treated as external modules.

Macros and functions required to create candidates are defined in nj_lib.h, nj_ext.h, njd.h,
nj_dicif.h, and iwnn.h.

Be sure to include these files when creating a pseudo dictionary.

iWnn Programming Manual CTR

CTR-06-0160-001-D 144  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

11.2 Pseudo Dictionary Interface (IWNN_PROGRAM_DIC_IF)
The interface function for connecting a pseudo dictionary to iWnn is defined as follows.

Code 11-1 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Declaration

#define IWNN_PROGRAM_DIC_IF \

 (*program_dic_operation)(IWNN_CLASS* iwnn, \

 u16 request, \

 INN_PROGRAM_DIC_MESSAGE *message)

Table 11-2 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
Iwnn

Analysis information class.
Stores internal information of the iWnn engine.
Analysis status is retrieved from here for a pseudo dictionary.
Note: Usually not written to iwnn.

IN
u16
request

Process request.
Content of the process request sent from iWnn to the pseudo
dictionary.
The following modes are available:
NJG_OPERATION_SEARCH: Search for first candidate.
NJG_OPERATION_SEARCH_NEXT: Search for next candidate.
NJG_OPERATION_GET_WORD_INFO: Get word information.
NJG_OPERATION_GET_STROKE: Get reading string.
NJG_OPERATION_GET_STR: Get candidate string.
NJG_OPERATION_GET_ADDITIONAL: Get additional information
string.
NJG_OPERATION_LEARN: Learn word.
NJG_OPERATION_UNDO_LEARN: Undo learning.
NJG_OPERATION_ADD_WORD: Add word.
NJG_OPERATION_DELETE_WORD: Delete word.
With a pseudo dictionary, processing is performed using iwnn and
message information for each request.

IN/
OUT

IWNN_PROGRAM_DIC_MES
SAGE
*message

Dictionary interface message.
Stores information required for processing between the iWnn engine
and pseudo dictionaries. Information generated by a pseudo
dictionary is stored in this structure and returned to the iWnn
engine.

CTR iWnn Programming Manual

 2011–2013 Nintendo 145 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 11-3 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Return Values

Return
Value Description

s16

[When using NJG_OPERATION_SEARCH/NJG_OPERATION_SEARCH_NEXT]:
1: Candidates present.
0: No candidates.
Negative value: Error.
[When using NJG_OPERATION_GET_WORD_INFO]:
0: Normal exit.
Negative value: Error.
[When using
NJG_OPERATION_GET_STROKE/NJG_OPERATION_GET_STR/NJG_OPERATION_GET_ADDITION
AL]:
Stored string length.
Negative value: Error.
[When using NJG_OPERATION_LEARN]:
0: Normal exit.
Negative value: Error.

Table 11-4 Pseudo Dictionary Interface Function (IWNN_PROGRAM_DIC_IF) Errors

Error Code Description

Any

Returned when an error occurs in the pseudo dictionary (when the pseudo dictionary
returns an error).
If subsequent processing can continue, iWnn handles the error internally and the iWnn
process continues to execute.
If subsequent processing cannot continue, iWnn returns an error to the application.
Errors returned to the application as an error code with the error value in the lower 7 bits.

11.3 Pseudo Dictionary Message (IWNN_PROGRAM_DIC_MESSAGE)

Code 11-2 Pseudo Dictionary Message (IWNN_PROGRAM_DIC_MESSAGE) Structure
Configuration
struct IWNN_PROGRAM_DIC_MESSAGE {

 IWNN_SEARCH_CONDITION* condition; // Search conditions

 IWNN_SEARCH_LOCATION_SET* location;// Search cursor

 IWNN_DIC_SET* dicSet; // Dictionary set to be searched

 IWNN_WORD* word; // Word information

 IWNN_LEARN_WORD* learnWord; // Word registration information

 wchar_t* stroke; // Storage for obtained reading string

 wchar_t* string; // Storage for obtained notation string

 wchar_t* additional; // Storage for obtained additional

 information string

 u16 strokeSize; // stroke size

 u16 strSize; // string size

iWnn Programming Manual CTR

CTR-06-0160-001-D 146  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

 u32 additionalSize; // additional size

 u16 dicIdx; // Dictionary mount location

};

Table 11-5 Pseudo Dictionary Message (IWNN_PROGRAM_DIC_MESSAGE) Structure
Members

Member Description

IWNN_SEARCH_CONDITION*
Condition

Search conditions.
Includes information such as the search method (forward lookup prefix
match search, derived search, and so forth), the reading string to
search for, the order in which to return candidates (reading order or
frequency order).

IWNN_SEARCH_LOCATION_SET*
location

Search cursor.
Includes information such as the status of search results (candidate
found/not found) and the ID of candidates returned by the dictionary.
This is used to store which candidates in the dictionary are being
accessed.

IWNN_DIC_SET*
dicSet

Dictionary set to be searched.
Includes dictionary set information, such as the dictionary handle to
use in the search and search limits.
This is used to access dictionary information based on the dictionary
mount location.

IWNN_WORD*
word

Word information.
Includes information such as the length of the independent
word/ancillary word parts, the part of speech, the frequency value, and
the dictionary cursor for the word searched for.

IWNN_LEARN_WORD *
learnWord

Word registration information.
Includes information such as the part of speech, connect flag for the
candidate previously confirmed, and undo flag for the word searched
for.

wchar_t*
stroke

Reading string.
Used when getting a reading string and during learning.

wchar_t*
string

Candidate string.
Used when getting a candidate string and during learning.

u16
strokeSize

Stroke size.
Specified in bytes.

u16
strSize

String size.
Specified in bytes.

u16
dicIdx

Dictionary mount location
Mount location in IWNN_DIC_SET of the dictionary that sent the
message.

Note: For details, refer to section 11.5 Pseudo Dictionary Processing Specifications.

CTR iWnn Programming Manual

 2011–2013 Nintendo 147 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

11.4 Word Registration Information (IWNN_LEARN_WORD)

Code 11-3 Word Registration Information (IWNN_LEARN_WORD) Structure Configuration

struct IWNN_LEARN_WORD {

 u16 forePartsOfSpeech; // Previous part of speech number

 u16 backPartsOfSpeech; // Later part of speech number

 u16 connect; // Connect flag

 u16 undo; // Undo flag

};

Table 11-6 Word Registration Information (IWNN_LEARN_WORD) Structure Members

Member Description

u16
forePartsOfSpee
ch

Previous part of speech number.
Includes previous part of speech number information for the candidate to be learned
or added.

u16
backPartsOfSpee
ch

Later part of speech number.
Includes later part of speech number information for a candidate to be learned or
added.

u16
connect

Connect flag.
Includes flag information representing connectivity between the candidate to be
learned or added, and the previously confirmed candidate.

u16
undo

Undo flag.
Includes information on the flag representing the undo start location for the candidate
to be added, and how many learning operations to undo.

Note: For details, see 11.5 Pseudo Dictionary Processing Specifications.

11.5 Pseudo Dictionary Processing Specifications
The processing to be performed by the pseudo dictionary for each processing request is as follows.

11.5.1 First Search (NJG_OPERATION_SEARCH)
First search returns the single highest priority candidate of all candidates that match the search string.

iWnn Programming Manual CTR

CTR-06-0160-001-D 148  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 11-7 First Search (NJG_OPERATION_SEARCH) Input Parameters

message->condition

message->condition
->reading

Search string.
Represents the reading string during prediction or conversion, or the string to be
analyzed during morphological analysis.
Stores the reading of the pre-confirmation phrase during a derived search.
This string is NULL terminated.

message->condition
->readingLen

Search string length.
Represents the length of the string to be searched for.

message->condition
->operation

Search method.
NJ_CURSOR_OPERATION_COMPLETE: Forward lookup complete match search.
NJ_CURSOR_OPERATION_FORE: Forward lookup prefix match search.
NJ_CURSOR_OPERATION_REVERSE: Reverse lookup complete match search.
NJ_CURSOR_OPERATION_REVERSE_FORE: Reverse lookup prefix match search.
NJ_CURSOR_OPERATION_LINK: Derived search.

message->condition
->mode

Search order.
NJ_CURSOR_MODE_FREQUENCY: Frequency order.
NJ_CURSOR_MODE_READING: Reading order.

message->condition
->partsOfSpeech

Part of speech restriction.
Restriction condition for the part of speech to be created.
Use NjdConnectTest to determine whether the candidate to be created
conforms to the part of speech restriction.

message->condition
->kanji

Pre-confirmed phrase notation string (only when using
*NJ_CURSOR_OPERATION_LINK).
Represents the notation string of the pre-confirmed phrase to be accessed during
relationship prediction.
The string is NULL terminated.

Message->condition
->noReadingFore

Part of speech restriction (only when using
*NJ_CURSOR_OPERATION_LINK).
Part of speech restriction condition used during relationship prediction.

message->condition
->ancillaryConnect

Ancillary word connection status.
Indicates whether the candidate connects to an ancillary word.

message->location

message->location
->dicFrequency

Dictionary frequency.
Sets the upper and lower limits on the frequency of candidates to be returned.
The pseudo dictionary gives a frequency to candidates in the range from
dicFrequency.base to dicFrequency.high.
dicFrequency.base is guaranteed to be equal to or less than
dicFrequency.high.

message->dicIdx

message->dicIdx
Dictionary index number.

CTR iWnn Programming Manual

 2011–2013 Nintendo 149 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

message->dicSet

message->dicSet
Dictionary set to be searched.
Defines a valid dictionary set.
Used to get the rule dictionary handle (dicSet.ruleHandle[0]).

Iwnn

iwnn->njcMode

Function calling mode.
Represents the status of the iWnn function called from the application.
0: Initialized status or currently calling a prediction function.
1: Multiple phrase conversion status.
2: Getting all candidates status.
3: Morphological analysis status.

iwnn
->environment.type

Detailed status during prediction conversion.
Represents the internal status when a prediction function is called.
NJ_ANALYZE_INITIAL: Initial setting status.
NJ_ANALYZE_NEXT_PREDICTION: Derived search status.
NJ_ANALYZE_FORWARD_SEARCH: Pre-fix search status.
NJ_ANALYZE_FORWARD_SEARCH_WITH_NO_READING: Forward match search
status, including no reading prediction dictionaries.
NJ_ANALYZE_CONVERSION_MULTIPLE: Multiple conversion result retrieval
status.
NJ_ANALYZE_CONVERSION_SINGLE:
Single phrase conversion result retrieval status.
NJ_ANALYZE_COMPLETE: All candidate analysis result retrieval status.
NJ_ANALYZE_END: Conversion complete status.

iwnn
->state

State setting.
Represents current state information. May be accessed as necessary.

Table 11-8 First Search (NJG_OPERATION_SEARCH) Output

message->location

message->location
->location.current

Candidate ID.
Represents the number used to identify the candidate. Be sure to assign a
unique ID number to each candidate generated by the dictionary.
Information such as a reading string, notation string, and part of speech is
generated based on this ID in subsequent processing.

message->location
->cacheFrequency

Frequency value.
Represents the priority level of the candidate.

message->location
->location.currentInfo

Phrase count information.
Be sure to specify the fixed value 0x10.

message->location
->location.status

Search result status.
Stores one of the following values according to the search results.
NJ_STATUS_SEARCH_READY: Complete match present.
NJ_STATUS_SEARCH_END: No complete match (prefix match present).
NJ_STATUS_SEARCH_END_EXTENSION: No complete match (no prefix
match).

iWnn Programming Manual CTR

CTR-06-0160-001-D 150  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Return Values

1: Search match candidate present.

0: No search match candidate.

Negative value: Error.

11.5.2 Search Next Candidate (NJG_OPERATION_SEARCH_NEXT)
Search next candidate returns the candidate with the next highest priority that matches the search
string.

Table 11-9 Search Next Candidate (NJG_OPERATION_SEARCH_NEXT) Input Parameters

message->condition

Message->condition
->reading

Search string.
Represents the reading string during prediction or conversion, or the string to be
analyzed during morphological analysis.
Stores the reading of the pre-confirmation phrase during a derived search.
This string is NULL terminated.

message->condition
->readingLen

Search string length.
Represents the length of the string to be searched for.

message->condition
->operation

Search method.
NJ_CURSOR_OPERATION_COMPLETE: Forward lookup complete match search.
NJ_CURSOR_OPERATION_FORE: Forward lookup prefix match search.
NJ_CURSOR_OPERATION_REVERSE: Reverse lookup complete match search.
NJ_CURSOR_OPERATION_REVERSE_FORE: Reverse lookup prefix match search.
NJ_CURSOR_OPERATION_LINK: Derived search.

message->condition
->mode

Search order.
NJ_CURSOR_MODE_FREQUENCY: Frequency order.
NJ_CURSOR_MODE_READING: Reading order.

message->condition
->partsOfSpeech

Part of speech restriction.
Restriction condition for the part of speech to be created.
Use NjdConnectTest to determine whether the candidate to be created
conforms to the part of speech restriction.

message->condition
->kanji

Pre-confirmed phrase notation string (only when using
*NJ_CURSOR_OPERATION_LINK).
Represents the notation string of the pre-confirmed phrase to be accessed during
relationship prediction.
The string is NULL terminated.

message->condition
->noReadingFore

Part of speech restriction (only when using
*NJ_CURSOR_OPERATION_LINK).
Part of speech restriction condition used during relationship prediction.

message->condition
->ancillaryConnect

Ancillary word connection status.
Indicates whether the candidate connects to an ancillary word.

CTR iWnn Programming Manual

 2011–2013 Nintendo 151 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

message->location

message->location
->location.current

Previous Candidate ID.
Represents the ID number of the previously returned candidate.
Basically, the next candidate is searched for based on this ID number.

message->location
->dicFrequency

Dictionary frequency.
Sets the upper and lower limits on the frequency of candidates to be returned.
The pseudo dictionary gives a frequency to candidates in the range from
dicFrequency.base to dicFrequency.high.
dicFrequency.base is guaranteed to be equal to or less than
dicFrequency.high.

message->dicIdx

message->dicIdx Dictionary index number.

message->dicSet

message->dicSet
Dictionary set to be searched.
Defines a valid dictionary set.
Used to get the rule dictionary handle (dicSet.ruleHandle[0]).

Iwnn

iwnn->njcMode

Function calling mode.
Represents the status of the iWnn function called from the application.
0: Initialized status or currently calling a prediction function.
1: Multiple phrase conversion status.
2: Getting all candidates status.
3: Morphological analysis status.

iwnn
->environment.type

Detailed status during prediction conversion.
Represents the internal status when a prediction function is called.
NJ_ANALYZE_INITIAL: Initial setting status.
NJ_ANALYZE_NEXT_PREDICTION: Derived search status.
NJ_ANALYZE_FORWARD_SEARCH: Pre-fix search status.
NJ_ANALYZE_FORWARD_SEARCH_WITH_NO_READING: Forward match search
status, including no reading prediction dictionaries.
NJ_ANALYZE_CONVERSION_MULTIPLE: Multiple conversion result retrieval
status.
NJ_ANALYZE_CONVERSION_SINGLE: Single phrase conversion result retrieval
status.
NJ_ANALYZE_COMPLETE: All candidate analysis result retrieval status.
NJ_ANALYZE_END: Conversion complete status.

iwnn
->state

State setting.
Represents current state information. May be accessed as necessary.

iWnn Programming Manual CTR

CTR-06-0160-001-D 152  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 11-10 Search Next Candidate (NJG_OPERATION_SEARCH_NEXT) Output

message->location

message->location
->location.current

Candidate ID.
Represents the number used to identify the candidate. Be sure to assign a
unique ID number to each candidate generated by the dictionary.
Information such as a reading string, notation string, and part of speech is
generated based on this ID in subsequent processing.

message->location
->cacheFrequency

Frequency value.
Represents the priority level of the candidate.

message->location
->location.currentInfo

Phrase count information.
Be sure to specify the fixed value 0x10.

message->location
->location.status

Search result status.
Stores one of the following values according to the search results:
NJ_STATUS_SEARCH_READY: Complete match present.
NJ_STATUS_SEARCH_END: No complete match (prefix match present).

Return Values

1: Search match candidate present.

0: No search match candidate.

Negative value: Error.

11.5.3 Get Word Information (NJG_OPERATION_GET_WORD_INFO)
Get word information creates word information (message->word) based on search cursor
(message->location) information.

CTR iWnn Programming Manual

 2011–2013 Nintendo 153 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 11-11 Get Word Information (NJG_OPERATION_GET_WORD_INFO) Input Parameters

message->location

message->location
->location.current

Candidate ID.
Represents the ID number of the candidate to be obtained.
Candidate information corresponding to this ID is created.
The location created by NJG_OPERATION_SEARCH or
NJG_OPERATION_SEARCH_NEXT is specified. A location
created by another dictionary is never specified.

message->dicIdx

message->dicIdx
Dictionary index number.

message->dicSet

message->dicSet

Dictionary set to be searched.
Defines a valid dictionary set.
Used to get the rule dictionary handle
(dicSet.ruleHandle[0]).

message->word

message->word
->reading

Search string.
Represents the search string used during candidate search.

NJ_GET_READING_LEN_FROM_STEM
(message->word)

Search string length.
Represents the length of the string to be searched for.

Table 11-12 Get Word Information (NJG_OPERATION_GET_WORD_INFO) Output

message->word

message->word
->stem.loc

Search cursor.
Stores message->location->location as is.

message->word
->stem

Independent word information.
This information is set as follows based on search cursor information.
Reading string length:
NJ_SET_READING_LEN_TO_STEM (message->word, string length).
This is the complete reading string of the candidate, not the search string.
Notation string length:
NJ_SET_CANDIDATE_LEN_TO_STEM (message->word, string length).
Part of speech number:
NJ_SET_FORE_PARTS_OF_SPEECH_TO_STEM (message->word, fore part of speech).
NJ_SET_BACK_PARTS_OF_SPEECH_TO_STEM (message->word, back part of
speech).
Pseudo candidate type: NJ_TYPE_UNDEFINE fixed.
NJ_SET_WORD_TYPE_TO_STEM (message->word, NJ_TYPE_UNDEFINE).
Frequency level:
NJ_SET_FREQUENCY_TO_STEM (message->word, frequency).
Set to the value of message->location->cacheFrequency.

iWnn Programming Manual CTR

CTR-06-0160-001-D 154  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Return Values

0: Normal exit.

Negative value: Error.

The part of speech number used to set independent word information is obtained using the get part of
speech function (NjdRuleGetPartsOfSpeech).

Be sure to get and set both the fore and back part of speech numbers for the part of speech in
question.

For example, get and set information as follows for a typical noun.

Code 11-4 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Get/Set Example

NJ_SET_FORE_PARTS_OF_SPEECH_TO_STEM(message->word,

 NjdRuleGetPartsOfSpeech(iwnn->dicSet.ruleHandle[NJ_MODE_TYPE_CONVERSION],

 NJ_PARTS_OF_SPEECH_NOUN_NO_CONJUGATION_FORE));

NJ_SET_BACK_PARTS_OF_SPEECH_TO_STEM(message->word,

 NjdRuleGetPartsOfSpeech(iwnn->dicSet.ruleHandle[NJ_MODE_TYPE_CONVERSION],

 NJ_PARTS_OF_SPEECH_NOUN_NO_CONJUGATION_BACK));

Code 11-5 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Declaration

s16 ret = NjdRuleGetPartsOfSpeech(

 IWNN_DIC_HANDLE ruleHandle, // Rule dictionary handle

 u8 type // Part of speech type

)

CTR iWnn Programming Manual

 2011–2013 Nintendo 155 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 11-13 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Arguments

Input/
Output Argument Description

IN
IWNN_DIC_HAND
LE
ruleHandle

Rule dictionaryhandle.
Specifies the handle of the rule dictionary to be used.
Use iwnn->dicSet.ruleHandle[NJ_MODE_TYPE_CONVERSION] for
pseudo dictionaries.

IN
u8
type

Part of speech type.
NJ_PARTS_OF_SPEECH_NOUN_NO_CONJUGATION_FORE regular noun
(fore).
NJ_PARTS_OF_SPEECH_NOUN_NO_CONJUGATION_BACK regular noun
(back).
NJ_PARTS_OF_SPEECH_NOUN_FORE noun conjugating with –suru (fore).
NJ_PARTS_OF_SPEECH_NOUN_BACK noun conjugating with –suru (back).
NJ_PARTS_OF_SPEECH_PERSON_NAME_FORE person’s name (fore).
NJ_PARTS_OF_SPEECH_PERSON_NAME_BACK person’s name (back).
NJ_PARTS_OF_SPEECH_PLACE_NAME_FORE place name (fore).
NJ_PARTS_OF_SPEECH_PLACE_NAME_BACK place name (back).
NJ_PARTS_OF_SPEECH_SYMBOL_FORE symbol (fore).
NJ_PARTS_OF_SPEECH_SYMBOL_BACK symbol (back).
NJ_PARTS_OF_SPEECH_NUMERIC_BACK number (fore)
NJ_PARTS_OF_SPEECH_SINGLE_KANJI_FORE single kanji (fore).
NJ_PARTS_OF_SPEECH_SINGLE_KANJI_BACK single kanji (back).
NJ_PARTS_OF_SPEECH_PSEUDO_FORE pseudo (fore).
NJ_PARTS_OF_SPEECH_PSEUDO_BACK pseudo (back).

Table 11-14 Get Part of Speech Function (NjdRuleGetPartsOfSpeech) Return Values

Return
Value Description

s16 Part of speech number (0 if there is an error).

11.5.4 Get Reading (NJG_OPERATION_GET_STROKE)
Get reading generates a reading string from word information (message->word).

In the case of prediction candidates, the complete reading string of the candidate is returned, rather
than the input reading string.

iWnn Programming Manual CTR

CTR-06-0160-001-D 156  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 11-15 Get Reading (NJG_OPERATION_GET_STROKE) Input Parameters

message->word

message->word

Word information.
Represents the word information of the candidate to be
obtained.
Word information created by
NJG_OPERATION_GET_WORD_INFO is specified. Words created
by another dictionary are never specified.

message->word
->reading

Search string.
Represents the search string used during candidate search.
Because a complete reading string is included in the search
string, in the case of a complete match candidate, a reading
string can be obtained from the search string.

message->word
->stem.location.current

Candidate ID.
Represents the ID number of the candidate to be obtained.
Because a complete reading string cannot be obtained from the
search string, in the case of a prefix match candidate, reading
data for the word must be obtained from the dictionary.

NJ_GET_READING_LEN_FROM_STEM
(message->word)

Reading string length.
Represents the complete reading string length.
A reading string of this length is always returned in the output.

message->strokeSize

message->strokeSize
Reading string storage region byte size.
Represents the size of the region (message->stroke) storing
the reading string.

Table 11-16 Get Reading (NJG_OPERATION_GET_STROKE) Output

message->stroke

message->stroke
Reading string.
Stores the complete reading string for the specified word.

Return Values

Integer equal to or
greater than 0: Stored reading string length.

Negative value: Error.

CTR iWnn Programming Manual

 2011–2013 Nintendo 157 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

11.5.5 Get Notation (NJG_OPERATION_GET_STR)
Get notation generates a notation string from word information (message->word).

Table 11-17 Get Notation (NJG_OPERATION_GET_STR) Input Parameters

message->word

message->word

Word information.
Represents the word information of the candidate to be
obtained.
Word information created by
NJG_OPERATION_GET_WORD_INFO is specified. Words
creates by another dictionary are never specified.

message->word
->reading

Search string.
Represents the search string used during candidate search.
Because a complete reading string is included in the search
string, in the case of a complete match candidate, a reading
string can be obtained from the search string.

message->word
->stem.location.current

Candidate ID.
Represents the ID number of the candidate to be obtained.

NJ_GET_READING_LEN_FROM_STEM
(message->word)

Reading string length.
Represents the complete reading string length.

NJ_GET_CANDIDATE_LEN_FROM_STEM
(message->word)

Candidate string length.
Represents the candidate string length of the word.
A candidate string of this length is always returned in the
output.

message->strSize

message->strSize
Notation string storage region byte size.
Size of the region (message->string) storing the notation
string.

Table 11-18 Get Notation (NJG_OPERATION_GET_STR) Output

message->string

message->string
Notation string.
Stores the notation string for the word.

Return Values

Integer equal to or
greater than 0: Stored notation string length.

Negative value: Error.

iWnn Programming Manual CTR

CTR-06-0160-001-D 158  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

11.5.6 Get Additional Information (NJG_OPERATION_GET_ADDITIONAL)
Get additional information generates an additional information string based on word information
(message->word).

Table 11-19 Get Additional Information (NJG_OPERATION_GET_ADDITIONAL) Input
Parameters

message->word

message->word

Word information.
Represents the word information of the candidate to be
obtained.
Word information created by
NJG_OPERATION_GET_WORD_INFO is specified. Words
creates by another dictionary are never specified.

message->word
->reading

Search string.
Represents the search string used during candidate search.
Because a complete reading string is included in the search
string, in the case of a complete match candidate, a reading
string can be obtained from the search string.

message->word
->stem.location.current

Candidate ID.
Represents the ID number of the candidate to be obtained.

NJ_GET_READING_LEN_FROM_STEM
(message->word)

Reading string length.
Represents the complete reading string length.

NJ_GET_CANDIDATE_LEN_FROM_STEM
(message->word)

Candidate string length.
Represents the candidate string length of the word.
A candidate string of this length is always returned in the
output.

message->dicIdx
Additional information index number.
Used when getting additional information.

message->additionalSize

message->additionalSize
Additional information string storage region byte size.
Represents the size of the region (message->additional)
storing the additional information string.

Table 11-20 Get Additional Information (NJG_OPERATION_GET_ADDITIONAL) Output

message->additional

message->additional
Additional information string.
Stores the additional information string of the word.

Return Values

Integer equal to or
greater than 0: Stored additional information string length.

Negative value: Error.

CTR iWnn Programming Manual

 2011–2013 Nintendo 159 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

11.5.7 Learn (NJG_OPERATION_LEARN)
This operation learns words according to input parameters.

This operation message is sent even when learning a word other than those obtained from a pseudo
dictionary. When learning a word obtained from a pseudo dictionary, be sure to determine that the word
was obtained from a pseudo dictionary before executing learning.

This operation message is not sent when learning by morphological analysis (MmxSelect).

Table 11-21 Learn (NJG_OPERATION_LEARN) Input Parameters

message->dicIdx

message->dicIdx
Dictionary index number.
Used when getting a dictionary handle.

message->dicSet

message->dicSet

Dictionary set to be searched.
Defines a valid dictionary set.
Used to get a rule dictionary handle (dicSet.ruleHandle[0]) or
dictionary handle.

message->word

message->word

Word information.
Represents the word information of the candidate to be obtained.
Word information created by NJG_OPERATION_GET_WORD_INFO is
specified. Words created by another dictionary are never specified.

message->word
->stem.location.current

Candidate ID.
Represents the ID number of the candidate to be learned.

message->word
->stem.location.handle

Dictionary handle.
Represents the dictionary handle from which the candidate to be learned
was obtained.

message->word
->stem.location.type

Dictionary handle type.
Represents the dictionary handle type from which the candidate to be
learned was obtained.
IWNN_DIC_INFO: : type is stored.

message->learnWord

message->learnWord
->forePartsOfSpeech

Fore part of speech number.
The fore part of speech of the candidate to be learned.

message->learnWord
->backPartsOfSpeech

Back part of speech number.
The back part of speech of the candidate to be learned.

message->learnWord
->connect

Connection flag.
The flag indicating connectivity between the candidate to be learned and
the pre-confirmation candidate.

iWnn Programming Manual CTR

CTR-06-0160-001-D 160  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

message->dicIdx

message->learnWord
->undo

Undo flag.
The flag indicating whether the candidate to be learned represents the
undo start location.

message->stroke

message->stroke
Reading string storage region.
Stores the reading string of the candidate to be learned.

message->strokeSize

message->strokeSize
Reading string storage region string length.
Represents the reading string length of the candidate to be learned.

message->string

message->string
Notation string storage region.
Stores the notation string of the candidate to be learned.

message->strSize

message->strSize
Notation string storage region string length.
Represents the notation string length of the candidate to be learned.

message->additional

message->additional
Additional information string storage region.
Stores the additional information string for the candidate to be learned.

message->additionalSize

message->additionalSize
Additional information string storage region string length.
Represents the additional string length for the candidate to be learned.

Table 11-22 Learn (NJG_OPERATION_LEARN) Output

Return Values

Integer equal to or
greater than 0: Normal exit.

Negative value: Error.

11.5.8 Undo Learning (NJG_OPERATION_UNDO_LEARN)
Undo learning undoes learning for the number of times specified in word registration information
(message->learnWord).

CTR iWnn Programming Manual

 2011–2013 Nintendo 161 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table 11-23 Undo Learning (NJG_OPERATION_UNDO_LEARN) Input Parameters

message->dicIdx

message->dicIdx
Dictionary index number.
Used when getting a dictionary handle.

message->dicSet

message->dicSet

Dictionary set to be searched.
Enabled dictionary set definition.
Used to get a rule dictionary handle (dicSet.ruleHandle[0]) or dictionary
handle.

message->learnWord

message->learnWord
->undo

Undo count.
Represents the number of times to undo learning.

Table 11-24 Undo Learning (NJG_OPERATION_UNDO_LEARN) Output

Return Values

Integer equal to
or greater than 0: Normal exit.

Negative value: Error.

11.5.9 Add Word (NJG_OPERATION_ADD_WORD)
Add word adds words according to the input parameters.

Table 11-25 Add Word (NJG_OPERATION_ADD_WORD) Input Parameters

message->dicIdx

message->dicIdx
Dictionary index number.
Used when getting a dictionary handle.

message->dicSet

message->dicSet

Dictionary set to be searched.
Defines a valid dictionary set.
Used to get a rule dictionary handle (dicSet.ruleHandle[0]) or dictionary
handle.

message->learnWord

message->learnWord
->
forePartsOfSpeech

Fore part of speech number.
The fore part of speech of the candidate to be learned.

message->learnWord
->
backPartsOfSpeech

Back part of speech number.
The back part of speech of the candidate to be learned.

iWnn Programming Manual CTR

CTR-06-0160-001-D 162  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

message->dicIdx

message->learnWord
->connect

Connection flag.
The flag indicating connectivity between the candidate to be learned and the
pre-confirmation candidate.

message->learnWord
->undo

Undo flag.
The flag indicating whether the candidate to be learned represents the undo
start location.

message->stroke

message->stroke
Reading string storage region.
Stores the reading string of the candidate to be learned.

message->strokeSize

message->strokeSize
Reading string storage region string length.
Represents the reading string length of the candidate to be learned.

message->string

message->string
Notation string storage region.
Stores the notation string of the candidate to be learned.

message->strSize

message->strSize
Notation string storage region string length.
Represents the notation string length of the candidate to be learned.

message->additional

message->additional
Additional information string storage region.
Stores the additional information string for the candidate to be learned.

message->additionalSize

message-
>additionalSize

Additional information string storage region string length.
Represents the additional string length for the candidate to be learned.

Table 11-26 Add Word (NJG_OPERATION_ADD_WORD) Output

Return Values

Integer equal to or
greater than 0: Normal exit.

Negative value: Error.

CTR iWnn Programming Manual

 2011–2013 Nintendo 163 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

11.5.10 Delete Word (NJG_OPERATION_DELETE_WORD)
Delete word deletes words according to the input parameters.

Table 11-27 Delete Word (NJG_OPERATION_DELETE_WORD) Input Parameters

message->word

message->word

Word information.
Represents the word information of the candidate to be learned.
Word information created by NJG_OPERATION_GET_WORD_INFO is
specified. Words created by another dictionary are never specified.

message->word
->stem.location.current

Candidate ID.
Represents the ID number of the candidate to be learned.

message->word
->stem.location.handle

Dictionary handle.
Represents the dictionary handle from which the candidate to be learned
was obtained.

message->word
->stem.location.type

Dictionary handle type.
Represents the dictionary handle type from which the candidate to be
learned was obtained.
IWNN_DIC_INFO: : type is stored.

Table 11-28 Delete Word (NJG_OPERATION_DELETE_WORD) Output

Return Values

Integer equal to
or greater than 0: Normal exit.

Negative value: Error.

11.6 Basic Operation Sequence
The flow from Prediction Conversion to Candidate Confirmation is illustrated below (same for Regular
Conversion and Get All Candidates).

iWnn Programming Manual CTR

CTR-06-0160-001-D 164  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Figure 11-1 Flow From Prediction Conversion to Candidate Confirmation

loop *

:iWnn :Application
:Pseudo

DictionaryInitialize pseudo dictionary()

NjxInit()

NjxAnalyze()
First search()

First candidate location

Get word information()

Word information

Get notation()

Notation

NjxSelect()
Get notation ()

Notation

Get reading ()

Notation

Next candidate location

Get word information()

Word information

Get notation()

Notation

Search next candidate()
NjxAnalyze()

NjxGetCandidate() Get notation()

Notation

Learn()

CTR iWnn Programming Manual

 2011–2013 Nintendo 165 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

The flow from Morphological Analysis to Morphological Learning is illustrated below.

Figure 11-2 Flow from Morphological Analysis to Morphological Learning

loop *

loop *

:iWnn :Application
:Pseudo
Dictionary Initialize pseudo dictionary()

NjxInit()

MmxSplitWord()

First search()

First candidate location

Get word information()

Word information

MmxSelect()
Get notation()

Notation

MmxGetReading()

Get reading()

Reading

First search()

First candidate location

Get word information()

Word information

Search next candidate()

Next candidate location

iWnn Programming Manual CTR

CTR-06-0160-001-D 166  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

12 Candidate/Dictionary Lookup Filtering
12.1 Overview

With iWnn, process results output for prediction, multiple phrase conversion, get all candidates,
dictionary search, and morphological analysis can be filtered to exclude certain candidates.

For example, filtering can be used for the following applications.

• To exclude candidates that include strings not allowed by applications.
This includes filtering so that half-width katakana candidates are unusable, when creating e-mail or
making pictographs unusable in file name input fields.

• To limit the length of candidate strings.
This includes getting only candidates that fit inside the character count limitations, when entering
text into input fields that have a character limit.

To use filters, set a function pointer to the filter function in the option settings structure (IWNN_OPTION)
and enable it by executing the set options function (NjxSetOption) or the initialize function
(NjxInit). iWnn calls the filter function once per candidate. The filter function determines whether or
not each candidate passed from iWnn should be used, and notifies iWnn with its return value.

There are two types of filter: a dictionary lookup filter and a candidate filter. The phase for executing
these two types of filters differs as follows.

Table 12-1 Phase for Executing Dictionary Lookup Filter and Candidate Filter

Filter Phase in Which to Execute

Lookup Filter

Filter used during the dictionary search stage.
By excluding candidates using a filter at this stage, processing continues with excluded
candidates treated internally by iWnn as if they are not registered in the dictionary.
This is used in cases such as when excluding a certain character type.

Candidate Filter

Filter used after phrase information has been created.
With iWnn, additional processing such as for ancillary words is performed after
dictionary lookup and the creation of phrase information. After that, the candidate filter
is called to determine whether or not a given result is to ultimately be used as a
candidate.
This is used in cases such as when you want to limit the length of candidate strings.
A candidate filter cannot be used on the first candidate returned by the kana-kanji
conversion function (NjxConversion), split word function (MmxSplitWord), or get all
candidates function (NjxAllCandidates).

Macro functions required to create filter functions are defined in nj_lib.h, nj_ext.h, njfilter.h,
and iwnn.h. Be sure to include these files when creating a filter function.

CTR iWnn Programming Manual

 2011–2013 Nintendo 167 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

12.2 Dictionary Lookup Filter Interface (IWNN_PHASE1_FILTER_IF)
The interface function of connecting a lookup filter with iWnn is defined as follows.

Code 12-1 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Definition

typedef s16 (*IWNN_PHASE1_FILTER_IF)\

 (IWNN_CLASS* iwnn, IWNN_PHASE1_FILTER_MESSAGE *message);

Table 12-2 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
Stores information internal to the iWnn engine.
Note: Data is not usually written to iwnn.

IN
IWNN_PHASE1_FILTER_MESSAG
E*
message

Dictionary lookup filter message.
This includes candidate information to be filtered.
Note: For details, see section 12.3 Dictionary Lookup Filter
Messages (IWNN_PHASE1_FILTER_MESSAGE).

Table 12-3 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Return Values

Return
Value Description

s16
Other than 0: Use candidate.
0: Do not use candidate.

Table 12-4 Lookup Filter Interface Function (IWNN_PHASE1_FILTER_IF) Errors

Error Code Description

None There are no error codes for IWNN_PHASE1_FILTER_IF.

12.3 Dictionary Lookup Filter Messages
(IWNN_PHASE1_FILTER_MESSAGE)

Code 12-2 Dictionary Lookup Filter Messages (IWNN_PHASE1_FILTER_MESSAGE)
Structure Configuration
struct IWNN_PHASE1_FILTER_MESSAGE {

 IWNN_SEARCH_CONDITION* condition; // Search conditions

 wchar_t* stroke; // Reading string buffer

 wchar_t* string; // Notation string buffer

 s16 strokeLen; // Reading string length

 s16 strLen; // Notation string length

 IWNN_RESULT* result; // Word information

iWnn Programming Manual CTR

CTR-06-0160-001-D 168  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

 void* option; // Filter option

};

Table 12-5 Dictionary Lookup Filter Messages (IWNN_PHASE1_FILTER_MESSAGE)
Structure Members

Member Description

IWNN_SEARCH_CONDITION*
condition

Search conditions.
Includes information such as the search method (forward lookup prefix
match search, derived search, and so forth), the reading string to be
searched, and the order in which to return candidates (reading order or
frequency order).
Usually not used.

wchar_t*
stroke

Reading string.
Represents the reading string of the word.
Sometimes this string is not terminated by a NULL character.

wchar_t*
string

Candidate string.
Represents the candidate string of the word.
Sometimes this string is not terminated by a NULL character.

s16
strokeLen

Reading string length.
Specifies the reading string length (number of array elements).

s16
strLen

Candidate string length.
Specifies the candidate string length (number of array elements).

IWNN_RESULT*
result

Word information.
Stores information such as part of speech and frequency level.
Normally not used.

void*
option

Dictionary lookup filter option.
Represents the dictionary lookup filter option specified by option settings
(IWNN_OPTION).
This can be defined and used indepenedently for each filter relationship.

CTR iWnn Programming Manual

 2011–2013 Nintendo 169 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

12.4 Candidate Filter Interface (IWNN_PHASE2_FILTER_IF)
This interface function connects a candidate filter with iWnn. It is defined as follows.

Code 12-3 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Definition

typedef s16 (*IWNN_PHASE2_FILTER_IF) \

 (IWNN_CLASS* iwnn, IWNN_PHASE2_FILTER_MESSAGE *message);

Table 12-6 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Arguments

Input/
Output Argument Description

IN/
OUT

IWNN_CLASS*
iwnn

Analysis information class.
Stores internal information of the iWnn engine.
Note: Data is not usually written to iwnn.

IN
IWNN_PHASE2_FILTER_MESSAG
E*
message

Candidate filter message.
This includes candidate information to be filtered.
Note: For details, see section 12.5 Candidate Filter
Messages (IWNN_PHASE2_FILTER_MESSAGE).

Table 12-7 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Return Values

Return Value Description

s16
Other than 0: Use candidate.
0: Do not use candidate.

Table 12-8 Candidate Filter Interface Function (IWNN_PHASE2_FILTER_IF) Errors

Error Code Description

None There are no error codes for IWNN_PHASE2_FILTER_IF.

12.5 Candidate Filter Messages (IWNN_PHASE2_FILTER_MESSAGE)

Code 12-4 Candidate Filter Message (IWNN_PHASE2_FILTER_MESSAGE) Structure
Configuration
struct IWNN_PHASE2_FILTER_MESSAGE {

 IWNN_RESULT* result; // Phrase information

 void* option; // Filter option

};

iWnn Programming Manual CTR

CTR-06-0160-001-D 170  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table 12-9 Candidate Filter Message (IWNN_PHASE2_FILTER_MESSAGE) Structure
Members

Member Description

IWNN_RESULT*
result

Phrase information.
Includes information such as the phrase’s reading string, candidate string,
independent/ancillary word part of speech, and frequency.
As with the process result structure obtained by the prediction and multiple phrase
conversion processes, iWnn functions can be used to get the reading string and
candidate string.

void*
option

Candidate filter option.
Represents the candidate filter option specified by option settings (IWNN_OPTION). This
may be freely defined and used for each filter function.

CTR iWnn Programming Manual

 2011–2013 Nintendo 171 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

13 Standard Extension Module
13.1 Overview

Equipped with basic functions in the core, independent of the use environment (the language being
used, embedded mobile device, and so forth), iWnn is designed so that functions dependent on the
environment can be added as extension modules. Functions dependent on the environment are,
therefore, provided as a standard extension module, even if they are required as standard by the text
input system.

13.2 Standard Pseudo Candidate Dictionary Module (NjexPseudoDic)

13.2.1 Dictionary Overview
Pseudo dictionaries are used to generate standard pseudo candidates.

The standard pseudo candidate dictionary executes candidate generation processes (such as
conversion from hiragana to katakana and conversion from number readings to numeric characters)
that cannot be implemented using a standard, static dictionary. When performing conversion/prediction
for Japanese, always set this dictionary type in the dictionary set structure.

External functions are defined in iwnn.h.

When using a standard pseudo candidate dictionary, the following types of pseudo candidates can be
generated.

Table 13-1 Pseudo Candidate Types

Pseudo Candidate Type Description

NJ_TYPE_HIRAGANA
Candidates with a notation the same as the
reading.
For example: “あいうえお” → ”あいうえお”

NJ_TYPE_KATAKANA
Full-width katakana candidates.
For example: “あいうえお” → ”アイウエオ”

NJ_TYPE_HALF_KATAKANA

Half-width kana candidates.
For example: “あいうえお” → “ｱｲｳｴｵ”
This is not needed for models that do not allow for
half-width kana candidate input.

NJ_TYPE_FULL_KANJI_NUMERIC_GRADE_READING
Kanji candidates based on the kana reading.
For example: “いちまんごせん” → ”一万五千”

NJ_TYPE_FULL_NUMERIC_READING
Full-width Arabic number candidates based on the
kana reading.
For example: “いちまんごせん” → ”１５０００”

iWnn Programming Manual CTR

CTR-06-0160-001-D 172  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Pseudo Candidate Type Description

NJ_TYPE_HALF_NUMERIC_READING
Half-width Arabic number candidates based on the
kana.
For example: “いちまんごせん” → ” 15000 “

NJ_TYPE_FULL_KANJI_NUMERIC_READING
Kanji number candidates (including 〇) based on
the kana reading.
For example: “いちまんごせん” → ”一五〇〇〇”

Whether to use or not to use each pseudo candidate and settings for priority level are defined in the
IWNN_PSEUDO_SET structure. The pseudo dictionary work area for the standard pseudo candidate
dictionary module is specified for the dictionary set (IWNN_DIC_SET and IWNN_DIC_INFO). If NULL is
specified for the pseudo dictionary work area, the default setting is used.

Candidates such as alphanumeric pseudo candidates and date/time pseudo candidates, that can be
generated by Advanced Wnn, can also be used, as usual, by customizing the conversion table
according the key assignments of the terminal. For details, contact Nintendo support
(support@noa.com).

13.2.2 IWNN_PSEUDO_SET Structure

Code 13-1 IWNN_PSEUDO_SET Structure Configuration

struct IWNN_PSEUDO_SET {

 s16 count; // Number of pseudo candidates to be set

 u8 type[NJ_PSEUDO_SET_MAX]; // Type of pseudo candidates to be generated

}

Table 13-2 IWNN_PSEUDO_SET Structure Members

Member Description

s16
count

Number of pseudo candidates to be set.
Sets the number of pseudo candidates stored in type[].

u8
type

Type of pseudo candidates to be generated.
Stores the pseudo candidate type to be generated in order of highest priority.

CTR iWnn Programming Manual

 2011–2013 Nintendo 173 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

The default setting is as follows.

static IWNN_PSEUDO_SET pseudoSet = {

 7,

 {

 NJ_TYPE_FULL_KANJI_NUMERIC_GRADE_READING,

 NJ_TYPE_FULL_NUMERIC_READING,

 NJ_TYPE_HALF_NUMERIC_READING,

 NJ_TYPE_FULL_KANJI_NUMERIC_READING,

 NJ_TYPE_HIRAGANA,

 NJ_TYPE_KATAKANA,

 NJ_TYPE_HALF_KATAKANA,

 }

};

13.3 Standard Filtered Prediction Search Dictionary Module
(NjexPredictionPseudoDic)

This pseudo dictionary is for using candidates obtained when calling the get prediction candidate
function without a reading (reading = “”), during filtered relationship prediction searches.

The standard filtered prediction search dictionary performs operations that allow the use of multiple
phrase relationship prediction results that cannot be used during a usual filtered relationship prediction
search.

External functions are defined in iwnn.h.

13.4 Mixed Number Conversion Dictionary Module
(NjexNumericCharPseudoDic)

This pseudo dictionary is used to correctly convert a string such as “12 がつ” to “12 月”, by
appropriately identifying counters included in reading strings with mixed numbers.

External functions are defined in iwnn.h.

13.5 Number Relationship Prediction Dictionary Module
(NjexNumericForecastPseudoDic)

This pseudo dictionary is used to generate counters as no reading prediction candidates, immediately
after a number string has been confirmed, so that “月” and ”日” appearing as candidates after

“12” is confirmed and ”日” appearing as a candidate after “ 13 ” is confirmed. A suitable prediction
candidate is generated based on information such as the range of values in which the confirmed
number falls and words previously confirmed.

External functions are defined in iwnn.h.

iWnn Programming Manual CTR

CTR-06-0160-001-D 174  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Appendix A Character Type Definitions
Table A-1 Definition of Hiragana Characters

 ぁ あ ぃ い ぅ う ぇ え ぉ お か が き ぎ く

ぐ け げ こ ご さ ざ し じ す ず せ ぜ そ ぞ た

だ ち ぢ っ つ づ て で と ど な に ぬ ね の は

ば ぱ ひ び ぴ ふ ぶ ぷ へ べ ぺ ほ ぼ ぽ ま み

む め も ゃ や ゅ ゆ ょ よ ら り る れ ろ ゎ わ

ゐ ゑ を ん

Table A-2 Definition of Katakana Characters

 ァ ア ィ イ ゥ ウ ェ エ ォ オ カ ガ キ ギ ク

グ ケ ゲ コ ゴ サ ザ シ ジ ス ズ セ ゼ ソ ゾ タ

ダ チ ヂ ッ ツ ヅ テ デ ト ド ナ ニ ヌ ネ ノ ハ

バ パ ヒ ビ ピ フ ブ プ ヘ ベ ペ ホ ボ ポ マ ミ

ム メ モ ャ ヤ ュ ユ ョ ヨ ラ リ ル レ ロ ヮ ワ

ヰ ヱ ヲ ン ヴ ヵ ヶ

Table A-3 Half-width Katakana Characters

 ｧ ｱ ｨ ｲ ｩ ｳ ｪ ｴ ｫ ｵ ｶ ｶﾞ ｷ ｷﾞ ｸ

ｸﾞ ｹ ｹﾞ ｺ ｺﾞ ｻ ｻﾞ ｼ ｼﾞ ｽ ｽﾞ ｾ ｾﾞ ｿ ｿﾞ ﾀ

ﾀﾞ ﾁ ﾁﾞ ｯ ﾂ ﾂﾞ ﾃ ﾃﾞ ﾄ ﾄﾞ ﾅ ﾆ ﾇ ﾈ ﾉ ﾊ

ﾊﾞ ﾊﾟ ﾋ ﾋﾞ ﾋﾟ ﾌ ﾌﾞ ﾌﾟ ﾍ ﾍﾞ ﾍﾟ ﾎ ﾎﾞ ﾎﾟ ﾏ ﾐ

ﾑ ﾒ ﾓ ｬ ﾔ ｭ ﾕ ｮ ﾖ ﾗ ﾘ ﾙ ﾚ ﾛ ヮ ﾜ

 ｦ ﾝ ｳﾞ

Note: Although voiced and semi-voiced sounds are listed in the same table locations to make the
correspondence with full-width characters easier to see, there are no voiced or semi-voiced
characters in the case of half-width katakana. For half-width katakana, voiced and semi-voiced
sounds are indicated by using the pure sound character in combination with a separate symbol
to indicate voicing (ﾞ) or semi-voicing (ﾟ).

CTR iWnn Programming Manual

 2011–2013 Nintendo 175 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Appendix B Frequently Asked Questions
B.1 FAQ Regarding Characters and Character Strings

B.1.1 Q: What range of character codes can be processed?

All codes can be used except the terminator code (0x0000 when using UTF-16BE).

For coding methods, such as for sequence codes, refer to the Custom Dictionary Creation Tool
Manual.

B.1.2 Q: How do I register pictograph characters specific to mobile telephones?

If pictograph characters cannot be registered in a dictionary under the development environment (such
as when a pictograph code outside the code range is assigned, or when there is no font including
pictographs available in the development environment), use octal notation to express the pictograph
code to register the pictograph in the dictionary.

Create dictionaries according to the I/O code used by the system. For an example, see the following
table.

Table B-1 Octal Notation to Express Pictograph Code to Register the Pictograph in the
Dictionary

Reading Candidate (Pictograph) Part of Speech Frequency

かお \366\131 Symbol 0

For coding methods, such as those for sequence codes, refer to the Custom Dictionary Creation Tool
Manual.

B.1.3 Q: How do I register the ‘ \ ’ (backslash) character?

Convert the ‘ \ ’ code to octal, to register the backslash character.

Create dictionaries according to the I/O code used by the system. For an example, see the following
table.

Table B-2 Octal Notation to Register the Backslash Character

Reading Candidate (Pictograph) Part of Speech Frequency

えん \134 Symbol 0

For coding methods, such as those for sequence codes, refer to the Custom Dictionary Creation Tool
Manual.

iWnn Programming Manual CTR

CTR-06-0160-001-D 176  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

B.1.4 Q: How do I use lines to indicate elongated vowels?

Elongated lines such as “―” are not included in auxiliary characters. To handle this exactly like vowel
elongation, the character type identification process must be changed.

B.2 FAQ Regarding Dictionaries

B.2.1 Q: What is the effect of the number and size of dictionaries in the dictionary
set?

If the size of a dictionary is doubled, the speed of a dictionary search decreases by 10 to 20%.

If the number of dictionaries of the same size is doubled, the speed of a dictionary search is two times
slower.

Although increasing dictionaries containing more than several tens of thousands of words affects the
conversion process speed, increasing dictionaries containing a few hundred words has only a slight
impact on the conversion processing speed.

B.2.2 Q: What about various sizes of custom dictionaries?

The resulting sizes when creating various compressed custom dictionaries from a 45,000-word
conversion dictionary are listed in the table below.

Table B-3 Various Sizes of Custom Dictionaries

Dictionary Format Size

AdvancedWnn V1.1
Compressed custom dictionary (forward lookup complete match dictionary)

615 KB

Forward lookup complete match compressed custom dictionary
511 KB
(83.11% compared to V 1.1)

Forward lookup prefix match compressed custom dictionary
635 KB
(103.19% compared to V 1.1)

Reverse lookup complete match compressed custom dictionary
801 KB
(130.19% compared to V 1.1)

B.2.3 Q: Can the maximum number of mountable dictionaries be set to 21 or
more?

A value of up to 100 can be set for this parameter.

Note, however, that you can expect slightly poorer performance in terms of processing speed as this
value increases.

Performance and other tests have been performed for iWnn with a maximum value of 20.

CTR iWnn Programming Manual

 2011–2013 Nintendo 177 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

B.3 FAQ Regarding Processing Methods

B.3.1 Q: Are there any precautions for using the associative learning flag with the
add word function?

There are two functions for executing learning in the learning dictionary: the learn function and the add
word function.

Since the associative learning flag for the learning and add word functions represents connection
information versus previously learned phrases, alternating use of these functions will result in
associative learning with unexpected results.

For example, when adding “関係” and ”学習” to the learning dictionary to learn the relationship between

them, the reading “かんけい” is converted on the registration screen and “関係” is input into the input
field.

1. At this time, learning information of the following type is registered in the learning dictionary when
learned using the learning function.

Table B-4 Learning Information Registered in the Learning Dictionary by the Learning
Function

Reading Candidate Relationship Information

かんけい 関係 No

2. “関係” is registered in the learning dictionary using the add word function.

Table B-5 Pictograph Code Registered in the Dictionary by Using the Add Word Function

Reading Candidate Relationship Information

かんけい 関係 No

かんけい 関係 No

3. The reading “がくしゅう” is converted on the registration screen and “学習” is input in the input field.
At this time, learning information of the following type is registered in the learning dictionary when
learned using the learning function.

Table B-6 Learning Information Is Registered in the Learning Dictionary

Reading Candidate Relationship Information

かんけい 関係 No

かんけい 関係 No

がくしゅう 学習 No

iWnn Programming Manual CTR

CTR-06-0160-001-D 178  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

4. ”学習” is registered in the learning dictionary using the add word function.

Table B-7 Pictograph Code Connected Through Associative Learning

Reading Candidate Relationship Information

かんけい 関係 No

かんけい 関係 No

がくしゅう 学習 No

がくしゅう 学習 Yes

In this case, “学習” and “学習” are connected through associative learning.

When using the associative learning flag of the add word function, be sure to add words to the learning
dictionary using only the add word function.

Because functions within the process result structure expiration period and provision range may affect
the learning dictionary and user dictionary, be careful when using the learning function and add word
function in conjunction with each other.

B.3.2 Q: How do I obtain a prediction candidate consisting of the same string as
the input string?

Get the candidate string using the get candidate string function and compare it to the input string.

B.3.3 Q: What data should be saved?

The learning dictionary and user dictionary must be saved.

Memory is allocated for these libraries by the application, and specified in the dictionary set. Save
these allocated memory regions as is.

B.3.4 Q: How do I implement an English-kana conversion feature (such as where
“かさた” converts to “adg”)?

An English-kana conversion feature for converting a string such as “かさた” to “adg”, “234“, or “2 時 34

分”, according to the characters assigned to the ten-key keypad, is widespread among international
mobile telephones when entering text.

This type of conversion can be supported when using iWnn by creating a pseudo dictionary.

Although this is not provided as a standard feature because key assignments vary depending on the
model, sample source code for a pseudo dictionary that implements English-kana conversion is
available.

Contact Nintendo support (support@noa.com) for details on changing the key table.

mailto:support@noa.com

CTR iWnn Programming Manual

 2011–2013 Nintendo 179 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

B.3.5 Q: How do I implement a function equivalent to the pseudo candidate
function under Advanced Wnn Ver. 2.3?

Under iWnn, the function for creating pseudo candidates has been moved to the extension module.
Although pseudo candidate-related functions found in Advanced Wnn have been deleted along with
this move, equivalent functions can be implemented as given below.

B.3.5.1 Set Pseudo Candidate Set Function (nj_set_gijiset)

When the standard pseudo candidate dictionary module is mounted to the dictionary set structure, it
can be substituted by setting the pseudo candidate set structure (IWNN_PSEUDO_SET) in the pseudo
dictionary work area.

IWNN_PSEUDO_SET is defined under Advanced Wnn in the standard pseudo candidate dictionary
module.

B.3.5.2 Get Pseudo Candidate Function (nj_get_giji)

Use of the get pseudo candidate function (NjexGetPseudo), compatible with Advanced Wnn Ver. 2.3,
is included in the standard pseudo candidate dictionary module.

B.3.6 Q: How do I reduce registration speed when batch registering to the learning
dictionary?

Processing time can be reduced by suppressing optimization performed each time a word is registered
in the learning dictionary. Be sure to specify NJ_ADD_WORD_OPTIMIZE_OFF in the extensionMode
member. (Refer to section 8.8 Option Settings (IWNN_OPTION).)

If you do so, remove the associated flag before registering any words after the first, and perform
optimization of the dictionary only once at the end. Otherwise, processing speed will drop when using
the dictionary in question.

B.4 Miscellaneous FAQ

B.4.1 Q: Does iWnn support multi-thread processing?

As long as writable dictionaries are not being shared, processes such as kana-kanji conversion,
morphological analysis, and dictionary search can be executed as multiple threads.

Because exclusive write control is not supported for learning dictionaries and user dictionaries, you
must prepare a dictionary region for each thread, in order to use writable dictionaries.

B.4.2 Q: Can I use a prediction conversion dictionary?

iWnn does not support prediction conversion dictionaries.

iWnn Programming Manual CTR

CTR-06-0160-001-D 180  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

B.4.3 Q: In what order are candidates obtained by the get prediction candidate
function (NjxAnalyze)?

Although candidates are arranged in order of prefix match search process result, multiple phrase
conversion process result, single phrase conversion process result, and then get all candidates
process result, the order of candidates within each process is determined in consideration of
relationship among the frequency set for each word, the priority level of the dictionary (dictionary
frequency setting), the state setting bias value, and pre-confirmation information.

This also makes it easier to prioritize candidates closest to the input string, when using fuzzy searches.

For example, even if “学校(がっこう)” is recorded in the learning dictionary, once “か” is entered, a

candidate that starts with “か”, such as “必ず” will appear as the first candidate.

If you want the priority of candidates to be determined based solely on frequency, rather than how
close it is to the input string, be sure to specify IWNN_OPTION_FORECAST_TOP_FREQUENCY in the
extensionMode member. (Refer to 8.8 Option Settings (IWNN_OPTION).)

CTR iWnn Programming Manual

 2011–2013 Nintendo 181 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Appendix C Dictionary Frequency Settings
When Using Multi-lingual Features

C.1 Introduction

This section describes the following, when using the multi-lingual prediction conversion features of
iWnn.

• Dictionary frequency settings.
• List of available functions.

C.2 Dictionary Frequency Settings

These settings allow you to specify the priority relationship among dictionaries according to a
dictionary frequency value.

Dictionary frequency values are set as a pair of values representing base frequency and high
frequency. iWnn handles the priority of stored words within a specified frequency range.

In addition, dictionary frequencies can be set separately for normal conversion (kana-kanji conversion
and get all candidates), prediction conversion, and morphological analysis.

Figure C-1 Dictionary Frequency Setting Example

In the example shown in Figure C-1, words stored in Dictionary C are always prioritized above words
stored in Dictionary A. In addition, by overlapping setting ranges as shown for Dictionary A and
Dictionary B, you can prioritize only those words stored in Dictionary B that have a higher priority than
words in Dictionary A. If the setting ranges for two dictionaries are the same, as shown for Dictionary C
and Dictionary D, priority is determined based solely on the frequency information stored for each
word.

iWnn Programming Manual CTR

CTR-06-0160-001-D 182  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

However, depending on the state setting during connection, prediction, and situational adaptive
prediction, the priority of a word may be changed because it lies outside the setting range of its
dictionary.

Limitations on Base Frequency/High Frequency by Dictionary Handle

Specify the base frequency and maximum frequency by dictionary handle in the range from 0 to 1000.
If the base frequency is greater than the maximum frequency, that dictionary will not be used.

Table C-1 Frequency Settings for English Dictionaries

Dictionary Type
Fuzzy

Search

For Conversion For Prediction For Morphological
Analysis

Base High Base High Base High

Standard Prediction
Dictionary Yes 100 400 100 400 10 0

No Reading
Prediction
Dictionary

No 100 244 100 244 10 0

Relationship
Prediction
Dictionary

Yes 245 245 245 245 10 0

Custom Dictionary No 0 ~ 400 0 ~ 400 0 ~ 400 0 ~ 400 10 0

User Dictionary No 500 500 10 0 10 0

Learning Dictionary Yes 501 1000 501 1000 10 0

For dictionaries not used in any particular mode, set a base frequency of 10 and a maximum frequency
of 0 (base frequency less than maximum frequency) to exclude them from use.

CTR iWnn Programming Manual

 2011–2013 Nintendo 183 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Table C-2 Frequency Settings for Korean Dictionaries

Dictionary Type
Fuzzy

Search

For Conversion For Prediction For Morphological
Analysis

Base High Base High Base High

Conversion
Dictionary No 400 500 10 0 10 0

Standard Prediction
Dictionary No 10 0 100 400 10 0

No Reading
Prediction
Dictionary

No 10 0 100 400 10 0

Relationship
Prediction
Dictionary

No 245 245 245 245 10 0

Custom Dictionary No 0 ~ 400 0 ~ 400 0 ~ 400 0 ~ 400 10 0

Single-Kanji
Dictionary No 0 10 10 0 10 0

User Dictionary No 500 500 10 0 10 0

Learning Dictionary No 501 1000 501 1000 10 0

For dictionaries not used in any particular mode, set a base frequency of 10 and a maximum frequency
of 0 (base frequency less than maximum frequency) to exclude them from use.

Table C-3 Frequency Settings for Chinese (Simplified) Dictionaries

Dictionary Type Fuzzy
Search

For Conversion For Prediction For Morphological
Analysis

Base High Base High Base High

Conversion
Dictionary No 100 400 10 0 10 0

Prediction
Conversion
Dictionary

No 10 0 100 560 10 0

Custom Dictionary No 0 ~ 400 0 ~ 400 0 ~ 400 0 ~ 400 10 0

Single-Kanji
Dictionary No 100 400 10 0 10 0

User Dictionary No 500 500 10 0 10 0

Learning
Dictionary No 501 1000 501 1000 10 0

For dictionaries not used in any particular mode, set a base frequency of 10 and a maximum frequency
of 0 (base frequency less than maximum frequency) to exclude them from use.

iWnn Programming Manual CTR

CTR-06-0160-001-D 184  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Table C-4 Frequency Settings for Chinese (Traditional) Dictionaries

Dictionary Type
Fuzzy

Search

For Conversion For Prediction For Morphological
Analysis

Base High Base High Base High

Conversion
Dictionary No 100 400 10 0 10 0

Prediction
Conversion
Dictionary

No 10 0 100 560 10 0

Custom Dictionary No 0 ~ 400 0 ~ 400 0 ~ 400 0 ~ 400 10 0

Single-Kanji
Dictionary No 100 400 10 0 10 0

Cangjie Prediction
Dictionary No 10 0 100 400 10 0

User Dictionary No 500 500 10 0 10 0

Learning
Dictionary No 501 1000 501 1000 10 0

For dictionaries not used in any particular mode, set a base frequency of 10 and a maximum frequency
of 0 (base frequency less than maximum frequency) to exclude them from use.

C.3 List of Usable Functions

iWnn provides the following functions for use during multilingual prediction conversion.

Table C-5 List of Usable Functions (○: Usable,－: Not Usable)

Function Name English Korean Chinese
(Simplified)

Chinese
(Traditional)

Initialize (NjxInit) ○ ○ ○ ○

Get reading string (NjxGetStroke) ○ ○ ○ ○

Get candidate string (NjxGetCandidate) ○ ○ ○ ○

Get dictionary handle (NjxGetDicHandle) ○ ○ ○ ○

Create dictionary region (NjxCreateDic) ○ ○ ○ ○

Check dictionary (NjxCheckDic) ○ ○ ○ ○

Get character type (NjxGetCharType) ○ ○ ○ ○

Change dictionary type (NjxChangeDicType) ○ ○ ○ ○

Get prediction candidate (NjxAnalyze) ○ ○ ○ ○

CTR iWnn Programming Manual

 2011–2013 Nintendo 185 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Function Name English Korean Chinese
(Simplified)

Chinese
(Traditional)

Kana-kanji conversion (NjxConversion) ○ ○ ○ ○

Get all candidates (NjxAllCandidates) ○ ○ ○ ○

Learn (NjxSelect) ○ ○ ○ ○

Undo learning (NjxUndo) ○ ○ ○ ○

Search word (NjxSearchWord) ○ ○ ○ ○

Get word (NjxGetWord) ○ ○ ○ ○

Add word (NjxAddWord) ○ ○ ○ ○

Delete word (NjxDeleteWord) ○ ○ ○ ○

Split words (MmxSplitWord) － － － －

Get part of speech group (MmxGetPartsOfSpeech) － － － －

Get reading string for morphological analysis
(MmxGetReading) － － － －

Learn by morphological analysis (MmxSelect) － － － －

Set options (NjxSetOption) ○ ○ ○ ○

Set state (NjxSetState) － － － －

Get state (NjxGetState) － － － －

Get registered word information (NjxGetWordInfo) ○ ○ ○ ○

Get no conversion candidate (NjxGetStrokeWord) － － － －

Merge candidate lists (NjxMergeWordList) ○ ○ ○ ○

Manage learning dictionary (NjxManageLearnDic) ○ ○ ○ ○

Delete word (NjxDeleteWord) ○ ○ ○ ○

iWnn Programming Manual CTR

CTR-06-0160-001-D 186  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Appendix D Notes
This appendix gives a supplemental description of sections already described in this manual and
special terminology.

D.1 Defined Values Set at Compile Time (Data Types)

Data types listed in section 3.1 Defined Values Set at Compile Time cannot be changed by the user.

D.2 Defined Values Set at Compile Time (Defined Values)

Except for some parameters, the maximum, minimum, and default values for defined values listed in
section 3.1 Defined Values Set at Compile Time cannot be changed by the user.

The default values for the following defined values can be changed.

• Maximum number of registerable words in a user dictionary (NJ_MAX_USER_COUNT).
• Maximum number of registerable fuzzy characters (NJ_MAX_CHARSET).

D.3 Creating Dictionaries

The phrase “when power is turned on the first time after shipment from the factory” found in section 7.1
Startup means the same thing as “the first time an application that uses this middleware is started.”

D.4 Cold Start/Hot Start

The following are descriptions of a cold start and a hot start.

• Cold start.
The act of starting a device in which software is embedded from a completely power-off state.

• Hot start.
The act of starting a device in which software is embedded using a software reset, that omits some
hardware checks.

D.5 FLASH Dictionaries/Non- FLASH Dictionaries

The following are descriptions of a FLASH dictionary and a non-FLASH dictionary.

• Non-FLASH dictionary.
Indicates a dictionary where all dictionary data is deployed in memory.

• FLASH dictionary.
Indicates a dictionary where only some dictionary data is deployed in memory, in order to conserve
memory being used by the application. Only an integrated dictionary can be used as a FLASH
dictionary.

CTR iWnn Programming Manual

 2011–2013 Nintendo 187 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

D.6 Automatic Learning When Replying to E-mail

Use of the automatic learning feature when replying to e-mail, described in section 7.12 Automatic
Learning When Replying to E-mail (Learning Morphological Analysis Results), assumes that the
hardware device in question is equipped with e-mail capability.

iWnn Programming Manual CTR

CTR-06-0160-001-D 188  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Revision History
Version Revision Date Category Description

1.0.9 2013/04/11 Changed
• 9.4 Create Dictionary Function (NjxCreateDic)

Added information on the number of learned phrases that can be
used.

1.0.8 2012/12/21 Added • 3.3 Access to Dictionary Files (OnMemory Version Only)
Added description of OnMemory operations.

1.0.7 2012/03/22 Changed

• 3.2 Including Header Files
Corrected the filename to iwnnCTR.h.

• 8.3 Dictionary Frequency Value Settings
Added that using the dictionary with the setting of the base
frequency greater than the maximum frequency for a word
search function results in an error.

1.0.6 2010/10/04 Changed

• Miscellaneous
Changed the document version from 1.0.5 to 1.0.6.

• Overall
Corrected distorted fonts in figures.

• 3.1 Defined Values Set at Compile Time
Added a note about changing variable types.
Added a note about changing defined values.
7.1 Startup
Added a note about cold starts and hot starts.
Added a note about FLASH dictionaries and non-FLASH
dictionaries.
Added a note about the timing for creating a dictionary region in
memory.

• 7.12 Automatic Learning When Replying to E-mail (Learning
Morphological Analysis Results)
Added a note on the anticipated use of the learning function
when replying to e-mail.

• 9.4 Create Dictionary Function (NjxCreateDic)
Changed the setting value for the type argument of the
NjxCreateDic function from a range of 0 to 4 to any of the
following values.
NJ_CREATE_DIC_TYPE_USER
NJ_CREATE_DIC_TYPE_LEARN_AWNN
NJ_CREATE_DIC_TYPE_LEARN
NJ_CREATE_DIC_TYPE_USER_ADDITIONAL
NJ_CREATE_DIC_TYPE_LEARN_ADDITIONAL

• 17 Appendix D: Notes
Newly added as a notes section.

1.0.5 2010/09/03 Changed

• Miscellaneous
Changed the document version from 1.0.4 to 1.0.5.

• Overall
Corrected a problem of styles missing from the style guide.
Removed the interface for frequency learning.

CTR iWnn Programming Manual

 2011–2013 Nintendo 189 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

Version Revision Date Category Description

1.0.4 2010/07/30 Changed

• Miscellaneous
Changed the document version from 1.0.3 to 1.0.4.
Changed the document name to”iWnn Programming Manual”.
(Deleted “memory savings version” from the title.)
Added section numbers to PDF bookmarks.
Deleted a description of ShiftJIS character codes.
Deleted unnecessary broken lines due to by disabling MS-Word
spell checking.
Corrected a problem of styles missing from the style guide.
Integrated this document with the separate document titled”iWnn
Appendix”.

• 2.7 Complete Match Searches (Forward/Reverse Lookup), Prefix
Match Searches (Forward Lookup) and Relationship Searches
Changed the section title

• 2.8 Various Dictionaries (Integrated, Single Kanji, Ancillary Word,
User, Learning, Rule, Custom, No Reading Prediction)
Changed the section title.

• 3 Notes on Using iWnn
Changed the section title.

• 5 Expiration Period and Applicable Scope of the Process Result
Structure
Changed the section title.
Changed the Japanese term “使用期限” to”有効期限”.

• 7.2 From Getting Candidates to Learning
Corrected the omission of words from “Figure 7-2 From Getting
Candidates to Learning”.

• 8.7 fuzzy character set (IWNN_CHARSET)
Made revisions to the example of a fuzzy character set structure.

• 9.4 Create Dictionary Function (NjxCreateDic)
Changed the examples of calculating sizes for the user
dictionary and learning dictionary to use UTF-16BE.

• 9.24 Get State Setting Function (NjxGetState)
Corrected the omission of words from “Code 9-27 Get State
Setting Function (NjxGetState) Declaration”.

• 11.1 Overview
Removed the unnecessary example of a pseudo dictionary.

1.0.3 2010/06/30 Changed

• Miscellaneous
Changed the document version from 1.0.0 to 1.0.3.

• 7.1 Startup
Added how to distinguish a non-FLASH dictionary from a FLASH
dictionary.

• 3.1 Defined Values Set at Compile Time
Corrected the format of the description of
NJ_MAX_USER_COUNT.

1.0.0 2010/05/07 Changed
• Miscellaneous

Changed the document version from 0.3.1 to 1.0.0.
Corrected typos.

iWnn Programming Manual CTR

CTR-06-0160-001-D 190  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

Version Revision Date Category Description

0.3.1 2010/04/05 Changed

• 11.5 Pseudo Dictionary Processing Specifications
Made revisions according to coding conventions.
 ・Changed “loct” to “location.”
 ・Changed “rhandle” to “ruleHandle.”

• 13 Standard Extension Module
Changed each section title so the module name appears in
parentheses.

• 13.2 Standard Pseudo Candidate Dictionary Module
(NjexPseudoDic)
Changed from “CellBodyBullet” style to the “CellBody”
style in Table 13 1 Pseudo Candidate Types

• Miscellaneous
Made revisions for supporting the document style guides of
developers.
 ・Support for ”8.3 Using Numbers”.
 ・Support for ” 3.12.3 Between Full-width and Half-width”.
Revised typos.

0.3.0 2010/03/31

Changed

• Miscellaneous
Applied styles to the entire document.

Added

• 18 Revision History
Newly added.

• Colophon
• Newly added.

0.2.0 2010/03/19 - Initial Version.

CTR iWnn Programming Manual

 2011–2013 Nintendo 191 CTR-06-0160-001-D
CONFIDENTIAL Released: May 8, 2013

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

iWnn Programming Manual CTR

CTR-06-0160-001-D 192  2011–2013 Nintendo
Released: May 8, 2013 CONFIDENTIAL

© 2011–2013 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	1 What is iWnn?
	2 Glossary
	2.1 Readings
	2.2 Candidates
	2.3 Phrases
	2.4 Parts of Speech
	2.5 Compound Words
	2.6 Additional Information
	2.7 Complete Match Searches (Forward/Reverse Lookup), Prefix Match Searches (Forward Lookup) and Derived Searches
	2.8 Various Dictionaries (Integrated, Single Kanji, Ancillary Word, User, Learning, Rule, Customized, No Reading Prediction)
	2.8.1 Integrated Dictionary
	2.8.2 Single Kanji Dictionary
	2.8.3 Ancillary Word Dictionary
	2.8.4 User Dictionary
	2.8.5 Learning Dictionaries
	2.8.6 Rule Dictionary
	2.8.7 Customized Dictionaries
	2.8.8 No Reading Prediction Dictionary

	2.9 Kana-Kanji Conversion
	2.10 Morphological Analysis
	2.11 Pseudo-Dictionaries
	2.12 Pseudo-Candidates
	2.13 Dictionary Handles
	2.14 Predictions

	3 Using iWnn
	3.1 Defined Values Set at Compile Time
	3.1.1 Maximum Conversion Reading String Length (NJ_MAX_LEN)
	3.1.2 Maximum Conversion Candidate String Length (NJ_MAX_RESULT_LEN)
	3.1.3 Maximum Additional Information Character Array Length (NJ_MAX_ADDITIONAL_LEN)
	3.1.4 Maximum Number of Pieces of Additional Information that can be Mounted (NJ_MAX_ADDITIONAL_INFO)
	3.1.5 Maximum Number of Obtainable Candidates (NJ_MAX_CANDIDATE)
	3.1.6 Maximum User Dictionary Word Registration String Length (NJ_MAX_USER_LEN)
	3.1.7 Maximum User Dictionary Word Registration Candidate String Length (NJ_MAX_USER_CANDIDATE_LEN)
	3.1.8 Maximum User Additional Information String Length (NJ_MAX_USER_ADDITIONAL_LEN)
	3.1.9 Maximum Number of Registerable Words in a User Dictionary (NJ_MAX_USER_COUNT)
	3.1.10 Maximum Number of Mountable Dictionaries (NJ_MAX_DIC)
	3.1.11 Maximum Morphological Analysis String Length (MM_MAX_MORPHOLIZE_LEN)
	3.1.12 Maximum Number of Same Reading Dictionary Lookups during Multiple Phrase Conversion (NJ_MAX_GET_RESULTS)
	3.1.13 Maximum Ancillary Word Parsing String Length when Getting All Candidates (NJ_MAX_ANCILLARY_LEN)
	3.1.14 Maximum Number of Registerable Fuzzy Characters (NJ_MAX_CHARSET)
	3.1.15 Maximum Cache Size (NJ_SEARCH_CACHE_SIZE)
	3.1.16 String Terminator Size (NJ_TERM_SIZE)
	3.1.17 Maximum Number of Obtainable Candidates (NJ_MAX_CANDIDATE), Maximum Length of Conversion Reading Strings (NJ_MAX_LEN)

	3.2 Including Header Files
	3.3 Access to Dictionary Files (OnMemory Version Only)

	4 List of Used Structures and Functions
	4.1 List of Structures
	4.1.1 Dictionary Sets (IWNN_DIC_SET, IWNN_DIC_INFO, IWNN_FLASH_DIC_INFO)
	4.1.2 Processing Result (IWNN_RESULT)
	4.1.3 Dictionary Search Cursor (IWNN_CURSOR)
	4.1.4 Word Information (IWNN_WORD_INFO)
	4.1.5 Fuzzy Character Set (IWNN_CHARSET)
	4.1.6 Parsing Information Class (IWNN_CLASS)
	4.1.7 Option Settings (IWNN_OPTION)
	4.1.8 Prediction Options (IWNN_ANALYZE_OPTION)
	4.1.9 State Settings (IWNN_STATE)
	4.1.10 Merge Candidates (IWNN_MERGE_RESULT)

	4.2 List of Functions
	4.2.1 Initialization (NjxInit)
	4.2.2 Get Reading String (NjxGetStroke)
	4.2.3 Get Candidate String (NjxGetCandidate)
	4.2.4 Get Dictionary Handle (NjxGetDicHandle)
	4.2.5 Create Dictionary Region (NjxCreateDic)
	4.2.6 Check Dictionary (NjxCheckDic)
	4.2.7 Get Character Type (NjxGetCharType)
	4.2.8 Change Dictionary Type (NjxChangeDicType)
	4.2.9 Get Prediction Candidate (NjxAnalyze)
	4.2.10 Kana-kanji Conversion (NjxConversion)
	4.2.11 Get All Candidates (NjxAllCandidates)
	4.2.12 Learn (NjxSelect)
	4.2.13 Undo Learning (NjxUndo)
	4.2.14 Search Word (NjxSearchWord)
	4.2.15 Get Word (NjxGetWord)
	4.2.16 Register Word (NjxAddWord)
	4.2.17 Delete Word (NjxDeleteWord)
	4.2.18 Delimited Input (MmxSplitWord)
	4.2.19 Get Part of Speech Group (MmxGetPartsOfSpeech)
	4.2.20 Get Reading String for Morphological Analysis (MmxGetReading)
	4.2.21 Learn by Morphological Analysis (MmxSelect)
	4.2.22 Set Options (NjxSetOption)
	4.2.23 Set State (NjxSetState)
	4.2.24 Get State Setting (NjxGetState)
	4.2.25 Get Word Information (NjxGetWordInfo)
	4.2.26 Get No Conversion Candidates (NjxGetStrokeWord)
	4.2.27 Merge Candidate Lists (NjxMergeWordList)
	4.2.28 Manage Learning Dictionary (NjxManageLearnDic)
	4.2.29 Get Additional Information String (NjxGetAdditionalInfo)
	4.2.30 Check Additional Information Region (NjxCheckAdditionalInfo)
	4.2.31 Get FLASH Dictionary Cache Size (NjxGetFlashDicCacheSize)
	4.2.32 Set FLASH Dictionary Information (NjxSetFlashDicInfo)

	5 Expiration Period and Applicable Scope of the Process Result Structure
	5.1 Applicable Scope of the Processing Result Structure

	6 Handling Strings
	6.1 Definition of a String
	6.2 Counting the Length of Strings
	6.3 Notes on Input Strings
	6.4 Definitions of Hiragana, Katakana, and Numeric Characters

	7 Operations Overview
	7.1 Startup
	7.2 From Getting Prediction Candidates to Learning
	7.3 From Multiple Phrase Conversion to Learning
	7.4 No Conversion Confirmation
	7.5 Search Registered Words in Dictionary and Get List
	7.6 User Dictionary/Learning Dictionary Initialization
	7.7 Registering Words to the User Dictionary/Learning Dictionary
	7.8 Deleting Words from the User Dictionary/Learning Dictionary
	7.9 Undo Learning
	7.10 Creating a Distributable Dictionary on a Terminal
	7.11 Morphological Analysis (Delimited Input)
	7.12 Automatic Learning When Replying to E-mail (Learning Morphological Analysis Results)

	8 Detailed Description of Structures
	8.1 Parsing Information Class (IWNN_CLASS)
	8.2 Dictionary Sets (IWNN_DIC_SET, IWNN_DIC_INFO, and IWNN_FLASH_DIC_INFO)
	8.3 Dictionary Frequency Value Settings
	8.3.1 Limitations on Base Frequency/Maximum Frequency by Dictionary Handle
	8.3.2 Recommended Values When Using Multiple Customized Dictionaries
	8.3.3 Recommended Values When Using a No Reading Prediction Dictionary (Start of Text)
	8.3.4 Recommended Values When Using Learning Results Based on Morphological Analysis
	8.3.5 Definition of the Standard Dictionary Frequency Value

	8.4 Processing Results (IWNN_RESULT)
	8.5 Dictionary Search Cursor (IWNN_CURSOR)
	8.5.1 Search Methods and Search Candidate Order by Dictionary
	8.5.2 Dictionary Type and Search Method
	8.5.3 Search Method and Search Candidate Order

	8.6 Word Registration Information (IWNN_WORD_INFO)
	8.7 Fuzzy Character Set (IWNN_CHARSET)
	8.8 Option Settings (IWNN_OPTION)
	8.9 Prediction Options (IWNN_ANALYZE_OPTION)
	8.10 State Setting (IWNN_STATE)
	8.10.1 Standard State Settings
	8.10.1.1 16 Categories
	8.10.1.2 32 Categories

	8.11 State Calculation Parameters (IWNN_STATE_CALC_PARAMETER)
	8.12 Merge Candidates (IWNN_MERGE_RESULT)

	9 Detailed Descriptions of Functions
	9.1 Get Reading String Function (NjxGetStroke)
	9.2 Get Candidate String Function (NjxGetCandidate)
	9.3 Get Dictionary Handle Function (NjxGetDicHandle)
	9.4 Create Dictionary Function (NjxCreateDic)
	9.4.1 Size and Number of Registered Entries in User Dictionaries
	9.4.2 Size and Number of Registered Entries in User Dictionaries (With Additional Information)
	9.4.3 Size and Number of Registered Entries in Learning Dictionaries

	9.5 Initialize Function (NjxInit)
	9.6 Check Dictionary Function (NjxCheckDic)
	9.7 Get Character Type Function (NjxGetCharType)
	9.8 Change Dictionary Type Function (NjxChangeDicType)
	9.9 Get Prediction Candidate Function (NjxAnalyze)
	9.10 Kana-Kanji Conversion Function (NjxConversion)
	9.11 Get All Candidates Function (NjxAllCandidates)
	9.12 Learning Function (NjxSelect)
	9.13 Undo Learning Function (NjxUndo)
	9.14 Search Word Function (NjxSearchWord)
	9.15 Get Word Function (NjxGetWord)
	9.16 Add Word Function (NjxAddWord)
	9.17 Delete Word Function (NjxDeleteWord)
	9.18 Split Word Function (MmxSplitWord)
	9.19 Get Part of Speech Group Function (MmxGetPartsOfSpeech)
	9.20 Get Reading String for Morphological Analysis Function (MmxGetReading)
	9.21 Learn by Morphological Analysis Function (MmxSelect)
	9.22 Set Options Function (NjxSetOption)
	9.23 Set State Function (NjxSetState)
	9.24 Get State Setting Function (NjxGetState)
	9.25 Get Word Information Function (NjxGetWordInfo)
	9.26 Get No Conversion Candidates Function (NjxGetStrokeWord)
	9.27 Merge Candidate Lists Function (NjxMergeWordList)
	9.28 Manage Learning Dictionary Function (NjxManageLearnDic)
	9.29 Get Additional Information String Function (NjxGetAdditionalInfo)
	9.30 Check Additional Information Function (NjxCheckAdditionalInfo)
	9.31 Get FLASH Dictionary Cache Size Function (NjxGetFlashDicCacheSize)
	9.32 Set FLASH Dictionary Information Function (NjxSetFlashDicInfo)

	10 Errors
	11 Pseudo Dictionaries
	11.1 Overview
	11.2 Pseudo Dictionary Interface (IWNN_PROGRAM_DIC_IF)
	11.3 Pseudo Dictionary Message (IWNN_PROGRAM_DIC_MESSAGE)
	11.4 Word Registration Information (IWNN_LEARN_WORD)
	11.5 Pseudo Dictionary Processing Specifications
	11.5.1 First Search (NJG_OPERATION_SEARCH)
	11.5.2 Search Next Candidate (NJG_OPERATION_SEARCH_NEXT)
	11.5.3 Get Word Information (NJG_OPERATION_GET_WORD_INFO)
	11.5.4 Get Reading (NJG_OPERATION_GET_STROKE)
	11.5.5 Get Notation (NJG_OPERATION_GET_STR)
	11.5.6 Get Additional Information (NJG_OPERATION_GET_ADDITIONAL)
	11.5.7 Learn (NJG_OPERATION_LEARN)
	11.5.8 Undo Learning (NJG_OPERATION_UNDO_LEARN)
	11.5.9 Add Word (NJG_OPERATION_ADD_WORD)
	11.5.10 Delete Word (NJG_OPERATION_DELETE_WORD)

	11.6 Basic Operation Sequence

	12 Candidate/Dictionary Lookup Filtering
	12.1 Overview
	12.2 Dictionary Lookup Filter Interface (IWNN_PHASE1_FILTER_IF)
	12.3 Dictionary Lookup Filter Messages (IWNN_PHASE1_FILTER_MESSAGE)
	12.4 Candidate Filter Interface (IWNN_PHASE2_FILTER_IF)
	12.5 Candidate Filter Messages (IWNN_PHASE2_FILTER_MESSAGE)

	13 Standard Extension Module
	13.1 Overview
	13.2 Standard Pseudo Candidate Dictionary Module (NjexPseudoDic)
	13.2.1 Dictionary Overview
	13.2.2 IWNN_PSEUDO_SET Structure

	13.3 Standard Filtered Prediction Search Dictionary Module (NjexPredictionPseudoDic)
	13.4 Mixed Number Conversion Dictionary Module (NjexNumericCharPseudoDic)
	13.5 Number Relationship Prediction Dictionary Module (NjexNumericForecastPseudoDic)

	Appendix A Character Type Definitions
	Appendix B Frequently Asked Questions
	B.1 FAQ Regarding Characters and Character Strings
	B.1.1 Q: What range of character codes can be processed?
	B.1.2 Q: How do I register pictograph characters specific to mobile telephones?
	B.1.3 Q: How do I register the ‘ \ ’ (backslash) character?
	B.1.4 Q: How do I use lines to indicate elongated vowels?

	B.2 FAQ Regarding Dictionaries
	B.2.1 Q: What is the effect of the number and size of dictionaries in the dictionary set?
	B.2.2 Q: What about various sizes of custom dictionaries?
	B.2.3 Q: Can the maximum number of mountable dictionaries be set to 21 or more?

	B.3 FAQ Regarding Processing Methods
	B.3.1 Q: Are there any precautions for using the associative learning flag with the add word function?
	B.3.2 Q: How do I obtain a prediction candidate consisting of the same string as the input string?
	B.3.3 Q: What data should be saved?
	B.3.4 Q: How do I implement an English-kana conversion feature (such as where “かさた” converts to “adg”)?
	B.3.5 Q: How do I implement a function equivalent to the pseudo candidate function under Advanced Wnn Ver. 2.3?
	B.3.5.1 Set Pseudo Candidate Set Function (nj_set_gijiset)
	B.3.5.2 Get Pseudo Candidate Function (nj_get_giji)

	B.3.6 Q: How do I reduce registration speed when batch registering to the learning dictionary?

	B.4 Miscellaneous FAQ
	B.4.1 Q: Does iWnn support multi-thread processing?
	B.4.2 Q: Can I use a prediction conversion dictionary?
	B.4.3 Q: In what order are candidates obtained by the get prediction candidate function (NjxAnalyze)?

	Appendix C Dictionary Frequency Settings When Using Multi-lingual Features
	C.1 Introduction
	C.2 Dictionary Frequency Settings
	C.3 List of Usable Functions

	Appendix D Notes
	D.1 Defined Values Set at Compile Time (Data Types)
	D.2 Defined Values Set at Compile Time (Defined Values)
	D.3 Creating Dictionaries
	D.4 Cold Start/Hot Start
	D.5 FLASH Dictionaries/Non- FLASH Dictionaries
	D.6 Automatic Learning When Replying to E-mail

	Revision History

