
 2013 Nintendo
CONFIDENTIAL Released: January 16, 2013

MoCam Middleware Software
Development Kit for NINTENDO 3DS

Programming Manual
Version 1.0.2

The content of this document is highly confidential
and should be handled accordingly.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 2  2013 Nintendo
Released: January 16, 2013 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and its licensed developers and are protected by national and international copyright laws. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 2013 Nintendo 3
CONFIDENTIAL Released: January 16, 2013

Table of Contents

1 About this document .. 4

2 Overview .. 5
2.1 Introduction .. 5
2.2 Syntactic philosophy .. 5
2.3 Modules description ... 6

2.3.1 namespace mw::mo::mocam ... 6
2.3.2 namespace mw::mo::mocam::autofocus .. 6
2.3.3 namespace mw::mo::helper ... 6

3 MoCam SDK usage guide ... 7
3.1 Autofocus ... 7

3.1.1 Autofocus initialization and finalization ... 7
3.1.2 Calculate focus on two images .. 8
3.1.3 Retrieving autofocus result ... 8
3.1.4 Advanced usage ... 9
3.1.5 Forcing focus to a certain value ... 11
3.1.6 Precaution of use ... 11

Code
Code 2-1 Example of MoCam SDK C++ API usage .. 5
Code 2-2 Example of MoCam SDK C API usage .. 5
Code 3-1 Inclusion of the mocam_Autofocus.h file in your source code ... 7
Code 3-2 Example of MoCam autofocus initialization ... 7
Code 3-3 MoCam autofocus finalization .. 7
Code 3-4 Example of MoCam focus calculation .. 8
Code 3-5 Example of MoCam focus retrieving .. 8
Code 3-6 MoCam autofocus SetCallback ... 9
Code 3-7 MoCam autofocus thread usage .. 10
Code 3-8 Example of usage of autofocus Set function ... 11

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 4  2013 Nintendo
Released: January 16, 2013 CONFIDENTIAL

1 About this document

This document is a guide explaining basic programming using the MoCam SDK for CTR API.

The content of this document is aimed at people who are familiar with C/C++ programming.

For a detailed specification of the MoCam SDK API, please see the HTML Function Reference
Manual.

If not done yet, please have a look to the CTR-MoCam_SDK_Quickstart_Guide-en_US.pdf
document; it will give you a quick overview of the MoCam SDK for CTR package and its
installation steps.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 2013 Nintendo 5
CONFIDENTIAL Released: January 16, 2013

2 Overview

2.1 Introduction

The MoCam SDK API is composed of both a C API that conforms to the C99 standard and a C++
API.
There is a perfect match between the C and the C++ API functionalities.
You'll see below the syntactic equivalences between these two APIs.

2.2 Syntactic philosophy

The MCcam SDK API is using the same naming convention as the Nintendo CTR SDK API.

The C++ API is using namespaces to categorize objects, functions and types.

The mw::mo namespace is the root namespace of Mobiclip middleware SDKs.

The C API uses prefixes obtained by concatenating namespace strings together.

Code 2-1 Example of MoCam SDK C++ API usage
mw::mo::mocam::autofocus::Handle aHandle;

aHandle.Initialize(myMalloc,myFree);

aHandle.Calculate(src0,src1,640,480,640*2,128);

Code 2-2 Example of MoCam SDK C API usage
mwmomocamautofocusHandle* aHandle;

mwmomocamautofocusHandleInitialize(&cHandle,myMalloc,myFree);

mwmomocamautofocusHandleCalculate(&aHandle,src0,src1,640,480,640*2,128,false);

C functions that use a MoCam object handle as a first parameter are replaced in the C++ API by
methods on the corresponding MoCam object.

Also note that output parameters provided or retrieved by address in the C API are provided or
retrieved by reference in the C++ API.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 6  2013 Nintendo
Released: January 16, 2013 CONFIDENTIAL

2.3 Modules description

Below you will find a list of modules available in the MoCam SDK API, sorted by their
corresponding namespace. For most of them there is a corresponding library file that must be
included in your OMakefile project to correctly build your application.

2.3.1 namespace mw::mo::mocam

This namespace only specifies error codes returned by MoCam API and typedef used for the
memory interface.

2.3.2 namespace mw::mo::mocam::autofocus

2.3.2.1 mw::mo::mocam::autofocus::Handle class

This class is used to automatically adjust the 3D focus of two stereo images (typically left-eye
and right-eye CTR camera captured images).
As explained in chapter 2.2, all of its methods have a C equivalent with the
mwmomocamautofocusHandle prefix and a handle as their first parameter.
The library name to use in your OMakefile project is libmw_mo_MoCam.(option).a.

2.3.3 namespace mw::mo::helper

This namespace contains various C++ classes that implement useful features for the developer
like camera or Y2R management.

These classes are not part of the MoCam SDK API, these are application driven classes that are
used by the sample codes provided with the SDK and their source code is available.

Developers can choose to use them as is for their own usage, modify them or write their own.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 2013 Nintendo 7
CONFIDENTIAL Released: January 16, 2013

3 MoCam SDK usage guide

3.1 Autofocus

To use autofocus functionality of MoCam SDK, you must include the mocam_Autofocus.h file
and have its path added to the INCLUDE section of your OMakefile project.

Code 3-1 Inclusion of the mocam_Autofocus.h file in your source code
#include "mocam_Autofocus.h "

Please have a look at the MoCam SDK sample codes for additional information on the MoCam
SDK API usage.

3.1.1 Autofocus initialization and finalization

Before calling any method on a mw::mo::mocam::autofocus::Handle object, you have to
call its Initialize method, providing the allocation and de-allocation functions to be used to
allocate and de-allocate this object’s memory.

Code 3-2 Example of MoCam autofocus initialization
extern void* myMalloc (size_t size); //The memory allocation function

extern void myFree (void* ptr); //The memory de-allocation function

mw::mo::mocam::autofocus::Handle aHandle;

aHandle.Initialize(myMalloc,myFree);

You can call the Finalize method on a calibration object you no longer use to free its internal
memory. This otherwise would be called further on by the C++ destructor as needed.

Code 3-3 MoCam autofocus finalization
aHandle.Finalize();

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 8  2013 Nintendo
Released: January 16, 2013 CONFIDENTIAL

3.1.2 Calculate focus on two images

To calculate the focus on two images, we can use
mw::mo::mocam::autofocus::Handle::Calculate function.
Once the focus is calculated, it will be used by cropping the first image left columns, and by
cropping the second image right columns. It means that the maximum possible range will usually
depend on screen resolution and camera capture resolution.
In the example below, we are calling focus calculation on two CTR camera captured images,
asking the autofocus to calculate a focus value ranging from 0 to CAMERA_WIDTH-
SCREEN_WIDTH, meaning we will have to crop both images by CAMERA_WIDTH-
SCREEN_WIDTH pixels maximum, letting us SCREEN_WIDTH pixels to display the result.

Code 3-4 Example of MoCam focus calculation
aHandle.Calculate(

 camera.GetImageChannel(0),

 camera.GetImageChannel(1),

 CAMERA_WIDTH,CAMERA_HEIGHT,CAMERA_WIDTH*2,

 CAMERA_WIDTH-SCREEN_WIDTH);

3.1.3 Retrieving autofocus result
Once we have calculated the focus, we can retrieve the result by calling
mw::mo::mocam::autofocus::Handle::Get.
To avoid focus “erratic” and “jumping” behavior, this function allows the user to use a damping
factor to damp down fast focus variations over time.

Code 3-5 Example of MoCam focus retrieving
f32 focus;

cHandle.Get(1.5f,focus);

Once the focus has been obtained, we can use it directly into OpenGL matrices, by adding the
value to the translation of the first image, and subtracting the value to the translation of the
second image.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 2013 Nintendo 9
CONFIDENTIAL Released: January 16, 2013

3.1.4 Advanced usage
Depending on the input images resolution and the calculation range, the focus calculation can
use too much CPU time.
For some usages it could be fine, but for other scenarios, it can become problematic.
To overcome this issue, you can call the focus calculation in a background thread, and use
mw::mo::mocam::autofocus::Handle::SetCallback to control the CPU time used by
the calculation.

Code 3-6 MoCam autofocus SetCallback
static void AutofocusThread(mw::mo::mocam::autofocus::Handle* aHandle)

{

 for(;;)

 aHandle->Calculate(

 camera.GetImageChannel(0),

 camera.GetImageChannel(1),

 CAMERA_WIDTH,CAMERA_HEIGHT,CAMERA_WIDTH*2,

 CAMERA_WIDTH-SCREEN_WIDTH);

}

static void AutofocusCallback(void* param)

{

}

static void AutofocusExample(mw::mo::mocam::autofocus::Handle* aHandle)

{

 aHandle->SetCallback(AutofocusCallback,0);

nn::os::Thread autofocusThread;

 autofocusThread.StartUsingAutoStack(AutofocusThread,aHandle,4096,16);

}

Now that we have a thread in place, we can make our thread sleep for a given duration in our
callback. This will allow focus calculation to “spread” on multiple video frames.
For reading simplification purpose, thread synchronization has been removed in the next
example.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 10  2013 Nintendo
Released: January 16, 2013 CONFIDENTIAL

Code 3-7 MoCam autofocus thread usage
static void AutofocusThread(mw::mo::mocam::autofocus::Handle* aHandle)

{

 for(;;)

{

 // Thread synchronization

 […]

 aHandle->Calculate(

 camera.GetImageChannel(0),

 camera.GetImageChannel(1),

 CAMERA_WIDTH,CAMERA_HEIGHT,CAMERA_WIDTH*2,

 CAMERA_WIDTH-SCREEN_WIDTH);

 }

}

static void AutofocusCallback(void* param)

{

 u32 sleepTime=*(u32*)param;

 nn::os::Thread::Sleep(nn::fnd::TimeSpan::FromMilliSeconds(sleepTime));

}

static void AutofocusExample(mw::mo::mocam::autofocus::Handle* aHandle)

{

 // Make the thread sleep during 30 ms

 aHandle->SetCallback(AutofocusCallback,30);

nn::os::Thread autofocusThread;

 autofocusThread.StartUsingAutoStack(AutofocusThread,aHandle,4096,16);

 for(;;)

{

 // Camera capture

 […]

 f32 focus;

 aHandle->Get(1.5f,focus);

 // Display the image centered

 tx0=CAMERA_WIDTH-SCREEN_WIDTH+focus;

 tx1=CAMERA_WIDTH-SCREEN_WIDTH-focus;

 Display(camera.GetImageChannel(0),tx0,

 camera.GetImageChannel(1),tx1);

}

}

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 2013 Nintendo 11
CONFIDENTIAL Released: January 16, 2013

3.1.5 Forcing focus to a certain value

As the focus returned by mw::mo::mocam::autofocus::Handle::Get is an interpolation of
the internal value, it’s sometimes important to be able to force internal focus value to a certain
number.
For example, when a user wants to switch off autofocus calculation, then switch on again after a
while (with completely different images), it will be convenient to reset internal focus value to zero.
In order to do that, use mw::mo::mocam::autofocus::Handle::Set function.

Code 3-8 Example of usage of autofocus Set function
f32 focus;

if (autofocusEnabled)

 aHandle->Get(1.5f,focus);

else

{

focus=0.f;

aHandle->Set(0.f);

}

3.1.6 Precaution of use

The camera image displayed on LCD screen is usually compensated using
StereoCameraCalibrationData.

Please note that using MoCam on a raw uncompensated camera image from OUT camera and
simply using calculated offset values for display could result in a few differences.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 12  2013 Nintendo
Released: January 16, 2013 CONFIDENTIAL

Revision History
Version Revision Date Category Description

1.0.2 2011/05/23 • Harmonized capitalization.

1.0.1 2011/05/13 - • Removed typo errors.

1.0.0 2011/03/15 - • Initial version.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 2013 Nintendo 13
CONFIDENTIAL Released: January 16, 2013

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

 MoCam Middleware Software Development Kit for NINTENDO 3DS Programming Manual

 14  2013 Nintendo
Released: January 16, 2013 CONFIDENTIAL

©2013 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	1 About this document
	2 Overview
	2.1 Introduction
	2.2 Syntactic philosophy
	2.3 Modules description
	2.3.1 namespace mw::mo::mocam
	2.3.2 namespace mw::mo::mocam::autofocus
	2.3.2.1 mw::mo::mocam::autofocus::Handle class

	2.3.3 namespace mw::mo::helper

	3 MoCam SDK usage guide
	3.1 Autofocus
	3.1.1 Autofocus initialization and finalization
	3.1.2 Calculate focus on two images
	3.1.3 Retrieving autofocus result
	3.1.4 Advanced usage
	3.1.5 Forcing focus to a certain value
	3.1.6 Precaution of use

