

 2011–2014 Nintendo CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

CTR

AR Library Programming Manual
2014/04/17

Version 1.3

The content of this document is highly confidential
and should be handled accordingly.

CTR AR Library Programming Manual

CTR-06-0155-001-D 2  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

AR Library Programming Manual CTR

 2011–2014 Nintendo 3 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

Table of Contents

1 Introduction ... 5
1.1 Glossary .. 5

2 Building ... 6
2.1 Adding the Include Path .. 6
2.2 Adding Compiler Flags .. 6
2.3 Adding Library Files .. 6

3 How to Use the Library ... 7
3.1 Required Header Files .. 8
3.2 Initialization ... 8
3.3 Preparing the Marker Template... 9

3.3.1 Marker Database ... 9
3.4 Registering the Input Image .. 10

3.4.1 Camera Settings When Camera Images Are Used as Input ... 12
3.4.2 Debugging Information .. 12

3.5 Detecting the Markers ... 13
3.6 Getting the Detection Results ... 14
3.7 Using the Detection Results.. 15

3.7.1 Detected Marker Information ... 17
3.7.2 Estimating the Marker Coordinate System .. 18
3.7.3 Converting from Marker Coordinates to Camera Coordinates .. 19

3.8 Working with the Stereo Cameras .. 20
3.8.1 Camera Settings .. 20
3.8.2 Measuring the Distance to the Marker .. 20
3.8.3 Reducing the Processing Load for Marker Detection ... 21

4 Description of the Sample Demos .. 22
4.1 Sample Demos ... 22
4.2 Common Definitions Between Sample Demos ... 22
4.3 Common Behavior Between Sample Demos ... 23
4.4 simple Demo ... 23
4.5 stereo Demo ... 24
4.6 marker_maker Demo .. 24
4.7 multi_marker Demo ... 25

5 Example of Practical Use in an Application .. 26
5.1 Identifying Numerous AR Cards ... 26

5.1.1 Using the Colorbit Library .. 26

CTR AR Library Programming Manual

CTR-06-0155-001-D 4  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

5.1.2 Real-Time Detection Processes ... 26
5.1.3 Process for Improving Accuracy During Tracking ... 27

5.2 Recognizing Markers for Posters ... 27

Revision History ... 28

Code
Code 2-1 Adding the Include Path .. 6
Code 2-2 Adding Compiler Flags ... 6
Code 2-3 Adding Library Files .. 6
Code 3-1 Including the Header File .. 8
Code 3-2 Marker Template Structure ... 9
Code 3-3 Marker Database Class .. 10
Code 3-4 Class That Handles Input Images .. 11
Code 3-5 Marker Detection Class .. 13
Code 3-6 Class That Accepts Detection Results ... 14
Code 3-7 Class That Maintains a List of Detected Markers ... 15
Code 3-8 Class That Maintains Information on Individual Detected Markers .. 17
Code 3-9 Class That Estimates the Marker Coordinate System .. 18
Code 3-10 Class That Handles the Perspective Projection Matrix .. 18
Code 3-11 Class That Converts Marker Coordinates into Camera Coordinates 19
Code 3-12 Sample Code to Get a Transformation Matrix from a Detected Marker 20

Tables
Table 3-1 Process Stages and Related Classes .. 8
Table 3-2 Member Variables of the Marker Template Structure ... 9
Table 3-3 Specifying the Border Color (mw::nar::Border_en) .. 12
Table 3-4 Types of Debugging Information ... 13
Table 4-1 Sample Demos ... 22
Table 4-2 Common Definitions Between Sample Demos .. 23

Figures
Figure 3-1 AR Library Classes and Process Flowchart .. 7
Figure 3-2 Marker Coordinate System Axes .. 16
Figure 3-3 Coordinates of the Four Corners of the Marker (in the Marker Coordinate System)................ 16
Figure 3-4 Calculating the Scale Spacing .. 21
Figure 4-1 Processing Outside of the Main Thread ... 24

AR Library Programming Manual CTR

 2011–2014 Nintendo 5 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

1 Introduction
This document explains how to use the AR library.

The main purpose of the AR library is to detect several types of markers in real time. When detecting
a marker, the library recognizes the marker’s type and determines its position and orientation. This
library assumes that the markers it detects are graphical cards (AR Cards).

1.1 Glossary
This section explains the terminology that this document uses to discuss augmented reality and the
AR library.

• AR
An abbreviation of "augmented reality."

• AR Application
An application that, among other things, composites 3D models with images of real space in
response to markers it identifies and to characteristics of those markers such as their position. The
AR library assumes that AR Cards are the markers and is provided to enable applications to
display 3D models according to the position and orientation of AR Cards in an image.

• AR Card
A graphical card with a design that can be identified by the AR library. (Six representative cards
are bundled with the CTR system.) You can create your own original AR Cards for your application.
For more information on creating AR Cards, see the Development Guide for Applications That Use
AR Cards.

• Marker
A symbol used to identify an AR Card. The AR library uses a card's design as its marker.

• Marker Template
Data that is a numeric representation of an AR Card's design; this data is used to identify a marker.

• Marker Database
A database that registers multiple marker templates you want to identify.

• Marker Coordinate System
A coordinate system whose origin is placed at the center of a detected marker.

• Camera Coordinate System
A coordinate system that represents the width and height of an input image as numbers in the
range (-1.0, +1.0), and whose origin is placed at the center of that input image.

CTR AR Library Programming Manual

CTR-06-0155-001-D 6  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

2 Building
This chapter explains the requirements for building an application that uses the AR library. The code
samples contain code that must be placed in the OMakefile you use with the CTR-SDK build system.

2.1 Adding the Include Path
You must add $(CTRMW_NAR_ROOT)/include/mw/nar to the compiler's include path.

Code 2-1 Adding the Include Path

INCLUDES += $(CTRMW_NAR_ROOT)/include/mw/nar

2.2 Adding Compiler Flags
You must add -DNAR_CTR__ to the compiler flags. Note that there is a single underscore between
"NAR" and "CTR" and two underscores after "CTR."

Code 2-2 Adding Compiler Flags

CCFLAGS += -DNAR_CTR__

2.3 Adding Library Files
Pass libmw_nar.*.a (where * is either fast or small) as a library file to the linker.

Code 2-3 Adding Library Files

LIBFILES = $`(addprefix $(CTRMW_NAR_ROOT)$(DIRSEP)libraries$(DIRSEP)$(config.

getTargetSubDirectory true)$(DIRSEP), libmw_nar)

AR Library Programming Manual CTR

 2011–2014 Nintendo 7 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

3 How to Use the Library
This chapter explains how to implement applications that use the AR library and traces the flow the
library uses to process data. The following figure shows the AR library classes used by applications
and a process flowchart.

Figure 3-1 AR Library Classes and Process Flowchart

CAMERA Captured image (YUV)

Y2R

Captured image (RGB)

Image_cl

MarkerDetector_cl

MarkerTemplate_st

MarkerDatabase_cl

MarkerDetectWork_cl

MarkerDetectWorkFast_cl
MarkerData_tc

MarkerList_tc

Marker_cl MarkerTrans_cl

Projection_cl

Transformation_cl

Coordinate
Transformation Matrix

3D Model

Composite Image

Perspective Projection
Matrix

Marker Pattern

Model Data

Detect markers

Detection results

Detected marker

List of detected markers

Get a coordinate
transformation matrix

Estimate the marker coordinate system

Marker template
database

Marker template

Input image

Classes that use working
memory for detecting markers

Set the perspective
projection matrix

Render the 3D model

Capture a camera image

Convert YUV
to RGB

External library

AR library class

Data created by AR library
(and other libraries)

Data provided by the
application

MarkerDetectWorkStrict_cl

CTR AR Library Programming Manual

CTR-06-0155-001-D 8  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

The following table shows how processes are split into stages and summarizes the AR library classes
associated with each stage. The stages are explained in subsequent sections.

Table 3-1 Process Stages and Related Classes

Process Stage Related Classes Overview

Preparing the Marker Template
• MarkerTemplate_st
• MarkerDatabase_cl

Registers marker information in a
database.

Registering the Input Image • Image_cl Registers an image in which to detect
markers.

Detecting the Markers

• MarkerDetector_cl
• Image_cl
• MarkerDatabase_cl
• MarkerData_tc
• MarkerDetectWork_cl
• MarkerDetectWorkFast_cl
• MarkerDetectWorkStrict_cl

Detects markers registered in the
database within the input image.

Getting the Detection Results
• MarkerData_tc
• MarkerList_tc
• Marker_cl

Gets individual detection results from a
list.

Using the Detection Results

• MarkerTrans_cl
• Marker_cl
• Projection_cl
• Transformation_cl

Gets a coordinate transformation matrix
for displaying 3D models from the
detection results.

3.1 Required Header Files
The AR library's header file is nar.h. Classes and everything else defined by the AR library belong to
the mw::nar namespace.

Code 3-1 Including the Header File

#include "nar.h"

For the most part, the AR library does not rely on other libraries. Two exceptions, however, are the
MATH and CAMERA libraries. The MATH library is required to get perspective and transformation
matrices and the CAMERA library is required to use camera images as input.

3.2 Initialization
The AR library has no initialization process. It also has no explicit finalization process.

When you need to process something with the AR library, create instances of the necessary classes.

AR Library Programming Manual CTR

 2011–2014 Nintendo 9 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

3.3 Preparing the Marker Template
A marker template contains information used to identify markers in an input image. The template
defines the size and design of a marker. Marker templates are defined by the
mw::nar::MarkerTemplate_st structure.

Code 3-2 Marker Template Structure

struct mw::nar::MarkerTemplate_st

{

 s32 id;

 f32 aspectRatio;

 f32 sideLength;

 MarkerPattern_st pattern;

 MarkerTemplate_st * p_Next;

};

The following table describes the values to specify in each member variable of the structure.

Table 3-2 Member Variables of the Marker Template Structure

Member Variable Description

id An ID used to identify the marker. You can specify any value of 0 or greater.

aspectRatio The marker's aspect ratio. Specify the width of the marker divided by sideLength.

sideLength
The marker's height. By defining this value with the marker's actual dimensions, you can
display a 3D model of nearly the same size on top of the marker. In the sample demos, this
is specified as the actual length of 7.36 cm.

pattern Pattern data representing the marker's design; this is used to detect the marker. Use the
sample demo marker_maker to create pattern data.

p_Next This is used by the library. Applications must not change this value.

Marker Template for the "?" Card

The "?" Card is an AR Card that does not require any special license and can be freely used by
applications.

You can use the marker template for the "?" Card, which is included with the sample demos, to
implement an AR application that uses "?" Cards. To match the size of a 3D model to a "?" Card, use
a sideLength value of 7.36 cm, which is the actual measured length of the marker's long side.

3.3.1 Marker Database

The marker database registers multiple marker templates that might be detected. The marker
database is defined by the mw::nar::MarkerDatabase_cl class.

CTR AR Library Programming Manual

CTR-06-0155-001-D 10  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

Code 3-3 Marker Database Class

class mw::nar::MarkerDatabase_cl

{

 MarkerDatabase_cl(f32 th = 0.5f);

 bool Register(mw::nar::MarkerTemplate_st &r_Template);

 bool IsRegistered(const mw::nar::MarkerTemplate_st &cr_Template);

 bool Unregister(mw::nar::MarkerTemplate_st &r_Template);

 void UnregisterAll();

 void SetThreshold(f32 th);

 f32 GetThreshold() const;

}

The constructor argument th is the threshold value for detecting markers. If a marker is detected with
a score at or above the threshold value, it is treated as a match. Specify a threshold value in the
range (-1.0, +1.0). As this value approaches +1.0, images are checked more strictly to be considered
a match for the marker template. In contrast, if you specify a value of -1.0 even a negative image
(with its color inverted) will be considered to be a match.

You can change the threshold value with the SetThreshold function. You can get the current
threshold value with the GetThreshold function.

Note: If only one marker template is registered in the database and the threshold is at its default
value of 0.5, an unregistered AR Card might be detected as a match (a false positive). Run
tests using various threshold values to determine an appropriate threshold setting.

The Register function registers a marker template in the marker database. This function returns
true when it registers a template successfully and false when it fails. A failure indicates the template
is already registered, the number of marker templates that can be registered in the database has
been exceeded, or some other reason. Use the IsRegistered function to determine whether a
marker template is already registered in the database.

Note: You may be able to reduce the number of false positives by registering markers that are
erroneously detected as matches when the threshold value is low. However, increasing the
number of marker templates in the database also increases the time required to detect a
marker.

The Unregister and UnregisterAll functions unregister marker templates from the marker
database. The former unregisters a specific marker template and the latter unregisters all marker
templates.

3.4 Registering the Input Image
An input image is an image in which you want to detect a marker. Markers can be detected in
YUV422 packed linear format images. Images output by the CAMERA library can be used as input,
therefore, without modification.

AR Library Programming Manual CTR

 2011–2014 Nintendo 11 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

The AR library uses the mw::nar::Image_cl class to handle input images.

Code 3-4 Class That Handles Input Images

class mw::nar::Image_cl

{

 Image_cl(u16 w, u16 h, u32* p_Work, u16* p_DebugImg = 0);

 void SetImage(const u16* cp_Image);

 u16 GetHeight() const;

 u16 GetWidth() const;

 u8 GetXStep() const;

 u8 GetYStep() const;

 void SetXStep(u8 x);

 void SetYStep(u8 y);

 u16 GetColor(u32 x, u32 y) const;

 void SetBorder(mw::nar::Border_en b);

 mw::nar::Border_en GetBorder();

 void SetDebugImage(u16* p_Image);

}

Specify the width and height (in pixels) of the input image with the constructor's w and h arguments,
respectively. Pass a pointer to the working memory for detection processing with p_Work; this working
memory must be a u32 array no smaller than the value calculated by the NAR_IMAGE_WORK_SIZE_4TH
macro. Use p_DebugImg to display debugging information. For more information about debugging,
see section 3.4.2 Debugging Information.

Use the SetImage function to register an input image (YUV422 linear format). Pass the starting
address of the buffer storing the input image into cp_Image. The input images are usually unmodified
camera images obtained by the CAMERA library, so we recommend the alignment of the buffer's
starting address to be a multiple of 4 that is at least 64 bytes.

Note: Do not destroy or overwrite the buffer (registered with the Image_cl class) that stores the
input image currently being processed until you have finished detecting markers in that image.

Use the SetXStep and SetYStep functions to set the number of horizontal and vertical pixels to be
processed each time you look for markers in an input image. For both directions these step intervals
must be a minimum of one pixel wide. You can use the GetXStep and GetYStep functions to get the
current settings. The default settings are defined as msc_DefaultXStep (8) and msc_DefaultYStep
(16). Although you can increase these settings to speed up processing input images, it may then no
longer be possible to detect small markers.

The GetColor function gets the color of the input image at the coordinates specified by x and y (the
reference point). This gets a color in RGBA5551 format.

CTR AR Library Programming Manual

CTR-06-0155-001-D 12  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

You can use the SetBorder and GetBorder functions to specify the border color (the color of the
blank frame surrounding the marker) and to get the current setting. By specifying the border color,
you can choose to have the AR library detect either black markers within a white border or white
markers within a black border. Choose the border color to pass to the b argument from the
enumerated type defined by mw::nar::Border_en.

Table 3-3 Specifying the Border Color (mw::nar::Border_en)

Definition Description

e_BorderWhiteBlack Black background within a white border: The marker design uses a black background.
This is the default setting.

e_BorderBlackWhite White background within a black border: The marker design uses a white
background.

3.4.1 Camera Settings When Camera Images Are Used as Input

AR applications normally combine rendered models with camera images. This section explains
recommended settings and precautions related to using CTR camera images as the input images.

3.4.1.1 512x384 Pixels Is the Recommended Camera Resolution

We recommend a camera resolution of 512x384 pixels (nn::camera::SIZE_DS_LCDx4). Although this
resolution's width and height both have more pixels than the LCD resolution, its width has the same
number of pixels as an image that is converted to RGB with the Y2R library and then treated as a
texture of size 512x512.

3.4.1.2 Set a High Brightness

We recommend setting a brightness of at least +3 to make markers show up clearly in camera
images.

3.4.1.3 Set a Low Exposure

Setting a negative exposure value reduces blurring in the camera image. However, setting a low
exposure darkens the entire image, so some color adjustment (such as brightening) is necessary
when you display the image.

3.4.1.4 Avoid Effects That Make Large Changes to the Hue

The AR library identifies a marker's design from the color of sample points on the marker. The marker
will not be detected properly, therefore, when effects cause large changes to the hue (such as
inverting the colors for a “negative” effect or applying a sepia tone). For example, if a sepia effect is
applied to the entire image, every AR Card bundled with the CTR system have a high probability of
being identified as a "?" Card in that image because its cube silhouette will appear yellow.

3.4.2 Debugging Information

You can have the library generate debugging information by using the p_DebugImg argument to the
Image_cl class's constructor to set an image region in which to display debugging information. If you
do not need debugging information, do not specify any value other than NULL for p_DebugImg in the

AR Library Programming Manual CTR

 2011–2014 Nintendo 13 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

constructor or for the argument to the SetDebugImage function. Generation of debugging information
is disabled for release builds (when BUILD=Release).

Debugging information is generated as a texture image. Because the color format of this texture
image is block-format RGBA5551, the texture image must be at least as large as the input image and
its formats must be GL_RGBA_NATIVE_DMP and GL_UNSIGNED_SHORT_5_5_5_1. The amount of
memory (in bytes) needed to display debugging information in an image region is yielded by the
formula: [texture height × texture width × 2].

Note: Debugging information might not be displayed correctly if the input image and the texture do
not have the same width.

The Debug_cl class manages the debugging information that is generated, and
Debug_cl::Switch_e defines the type of debugging information. The RGBA column below uses
RGBA5551 values to indicate the color with which the debugging information is rendered.

Table 3-4 Types of Debugging Information

Definition Debugging Information RGBA

me_ViewLineCandidates Edge candidates.
Lines are drawn around the edges of the marker.

(10, 31, 10, 1)
(31, 31, 10, 1)

me_ViewCheckMesh
Mesh for evaluating a marker.
This mesh draws lines that split the marker into sixteenths both
vertically and horizontally.

(10, 31, 10, 1)

me_ViewEdgeSlope The slope.
Straight lines are drawn parallel to the edges of the marker.

(31, 3, 3, 1)
(3, 31, 31, 1)

me_ViewSample Sample points calculated using the least squares method.
Points are rendered where marker edges intersect.

(31, 15, 0, 1)

3.5 Detecting the Markers
Although you use the Marker_Detector_cl class's Detect function to detect markers, you cannot
create an instance of the Marker_Detector_cl class. Call MarkerDetector_cl::Detect directly.

Code 3-5 Marker Detection Class

class mw::nar::MarkerDetector_cl

{

public:

 static s32 Detect(

 mw::nar::Image_cl& r_Image, mw::nar::MarkerDatabase_cl& r_DB,

 mw::nar::MarkerData_ac& r_Data,

 mw::nar::MarkerDetectWork_ac& r_Work);

};

CTR AR Library Programming Manual

CTR-06-0155-001-D 14  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

Pass into r_Image the instance of the Image_cl class that set the input image. After you have
finished detecting markers in that image, you can use the SetImage function to register a new input
image in the instance that you just passed into this function and then re-use that instance to detect
more markers. As a result, you do not have to re-create an instance of the Image_cl class each time
the input image changes, as long as the size of the input image remains the same.

Pass r_DB an instance of the MarkerDatabase_cl class in which you have registered the marker
templates for the markers that you want to detect.

The r_Data argument takes an instance of the MarkerData_ac class—an abstract class—to accept
detection results. To create the instance that you will actually pass as an argument, specify the
number of markers it is possible to detect to the concrete class MarkerData_tc. If you are detecting
markers in a series of input images from the same camera, pass the same instance of this class
every time.

The r_Work argument takes an instance of the MarkerDetectWork_ac class—an abstract class—to
handle working memory for detection processing. You actually pass an instance of the
MarkerDetectWork_cl, MarkerDetectWorkFast_cl, or MarkerDetectWorkStrict_cl concrete
class. During detection, MarkerDetectWork_cl references the average value of three points around
each sample point. MarkerDetectWorkFast_cl is faster because it references only the sample point,
but it is not quite as accurate at detecting markers. You must therefore be careful to prevent detection
errors when you use MarkerDetectWorkFast_cl. MarkerDetectWorkStrict_cl also references the
average value of three points around each sample point during detection, and additionally uses the
vanishing point to divide up detected marker regions. As a result, this is the most accurate detection
method but it causes a decrease in processing speed. You can use instances of these objects as you
see fit for your particular application, but we recommend using MarkerDetectWorkStrict_cl unless
you have a specific reason to do otherwise.

This function returns the number of markers that it detected. Get information on the detected markers
through the instance passed to r_Data.

3.6 Getting the Detection Results
The instance of the MarkerData_tc class that accepted the current detection results also maintains
the previous detection results.

Code 3-6 Class That Accepts Detection Results

template < s32 N >

class mw::nar::MarkerData_tc : public mw::nar::MarkerData_ac

{

public:

 virtual mw::nar::MarkerList_ac& GetrDetectingMarkerList();

 virtual mw::nar::MarkerList_ac& GetrLastMarkerList();

private:

AR Library Programming Manual CTR

 2011–2014 Nintendo 15 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

 mw::nar::MarkerList_tc< N > ma_MarkerLists[2];

};

The GetrDetectingMarkerList function gets the current list of detected markers and the
GetrLastMarkerList gets the previous list of detected markers.

Instances of the MarkerList_tc class for maintaining lists of detected markers are automatically
generated when an instance of the MarkerData_tc class is created.

Code 3-7 Class That Maintains a List of Detected Markers

template < s32 N >

class mw::nar::MarkerList_tc : public mw::nar::MarkerList_ac

{

public:

 u16 GetMarkerNum();

 virtual s32 GetMarkerNumWithID(s32 id);

 virtual mw::nar::Marker_cl* GetpMarker(u32 idx);

private:

 mw::nar::Marker_cl ma_Marker[N];

};

The GetMarkerNum function gets the number of detected markers in the list. You can use the
GetMarkerNumWithID function to get the number of markers that have the ID specified by id from all
the detected markers in the list.

To get individual markers in the list, specify an index to the GetpMarker function. NULL is returned
when you specify an index greater than or equal to the number of detected markers.

3.7 Using the Detection Results
To display models at the positions of individual detected markers, you need to understand both the
marker coordinate system and the camera coordinate system.

Marker Coordinate System

The marker coordinate system is used to display 3D models or other images on top of markers
detected in the input image. This coordinate system is defined in terms of the marker: the positive
x-axis points across the marker from its left to its right, the positive y-axis points through the marker
from its underside to its face side, and the positive z-axis points across the marker from its top to its
bottom. The origin is roughly at the center of the marker, but it may be shifted slightly (for example,
when there is an error detecting the outline of the marker). You can calculate the coordinates of the
four corners of the marker from the marker template's sideLength and aspectRatio.

CTR AR Library Programming Manual

CTR-06-0155-001-D 16  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

Figure 3-2 Marker Coordinate System Axes

+Y

+Z

+X

Figure 3-3 Coordinates of the Four Corners of the Marker (in the Marker Coordinate System)

width = (sideLength * aspectRatio)

((width / 2), 0, (height / 2))(-(width / 2), 0, (height / 2))

(-(width / 2), 0, -(height / 2)) ((width / 2), 0, -(height / 2))

height =
sideLength

Camera Coordinate System

The camera coordinate system has its origin at the center of the input image and uses numbers in the
range -1.0 to +1.0 to represent the width and height of the image. The upper-left corner and lower-
right corner of the input image have the coordinates (-1.0, -1.0) and (+1.0, +1.0), respectively.

AR Library Programming Manual CTR

 2011–2014 Nintendo 17 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

3.7.1 Detected Marker Information

The Marker_cl class maintains information on the individual markers that are detected.

Code 3-8 Class That Maintains Information on Individual Detected Markers

class mw::nar::Marker_cl

{

public:

 s32 GetID() const;

 f32 GetScore() const;

 f32 GetSideLength() const;

 f32 GetAspectRatio() const;

 void SuppressShake(f32 sim, f32 far);

 bool IsEstimated() const;

 mw::nar::Transformation_cl& GetrTransformation();

 const mw::nar::Vec3F_st& GetrNormal();

};

The GetID function gets the ID of the detected marker. The ID obtained by this function is the same
value specified by id in the marker template of this marker.

The GetScore function gets the detection score of the marker. This score approaches +1.0 as the
detected design more closely resembles the marker template's design.

The GetSideLength and GetAspectRatio functions get the length of the left side and the aspect
ratio, respectively, of the detected marker. These values are the same as the sideLength and
aspectRatio specified in the marker template.

The SuppressShake function corrects the marker's position by minimizing the effect of shaking hands
and trembling. To do so, this function finds the distance (in pixels) between the current and previous
positions of the detected marker on the input image, and calculates the square of this distance. If the
result is less than or equal to sim, the marker's position is corrected to its previous one. If the result is
less than or equal to far, the marker's position is corrected to the average of its current and previous
positions.

The IsEstimated function returns a value indicating whether the process of estimating the marker
coordinate system has finished. In other words, this function returns true either when the
MarkerTrans_cl class's Estimate function has finished estimating the marker coordinate system, or
when correction by the SuppressShake function has determined that the current marker coordinate
system is identical to the previous marker coordinate system. Once the process of estimating the
coordinate system has finished, you can use the GetrTransformation function to get a
transformation matrix that transforms from marker coordinates to camera coordinates. You can also
use the GetrNormal function to get the marker's normal vector in camera coordinates.

CTR AR Library Programming Manual

CTR-06-0155-001-D 18  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

3.7.2 Estimating the Marker Coordinate System

The marker coordinate system is estimated from the position and orientation of its marker. The
MarkerTrans_cl class estimates the marker coordinate system. Use the MarkerTrans_cl class's
Estimate function to estimate the marker coordinate system after you have first used the Marker_cl
class's IsEstimated function to check that the process of estimating the marker coordinate system
has not finished.

Code 3-9 Class That Estimates the Marker Coordinate System

class mw::nar::MarkerTrans_cl

{

public:

 MarkerTrans_cl();

 bool Estimate(mw::nar::Marker_cl& r_Marker,

 const mw::nar::Projection_cl& cr_Proj) const;

 void SetMildRotation(bool b, f32 t = 0.5f);

 void SetAccelerationOnMildRotation(bool b, f32 t = 0.25f);

};

You need an instance of the Marker_cl class (which has marker information) and an instance of the
Projection_cl class (which handles the perspective projection matrix) to run the Estimate function.
You can get an instance of the Marker_cl class from the detection results. Your application is
responsible for creating an instance of the Projection_cl class.

Code 3-10 Class That Handles the Perspective Projection Matrix

class mw::nar::Projection_cl

{

public:

 Projection_cl();

 Projection_cl(f32 w, f32 h, f32 near, f32 far, f32 aov = 66.0);

 void Set(f32 w, f32 h, f32 near, f32 far, f32 aov = 66.0);

 void GetMTX44(nn::math::MTX44& r_Mtx) const;

 void GetTrimmed(nn::math::MTX44& r_Mtx,

 f32 l, f32 r, f32 b, f32 t, f32 n, f32 f, f32 aov = 66.f) const;

};

If you create an instance of the Projection_cl class using its default no-arguments constructor, you
must call the Set function to set properties of the input image such as its width and height. The
constructor and the Set function take the same arguments: w and h specify the width and height of
the input image; near and far specify the distance to the near and far planes; and aov specifies the

AR Library Programming Manual CTR

 2011–2014 Nintendo 19 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

angle of view (in degrees). The input image is usually captured by a camera, so the aov value is
obtained from the camera's calibration data.

You can get the perspective projection matrix with the GetMTX44 function. If you need a trimmed
perspective projection matrix—for example, when the screen display and the input image have
different ratios—get it with the GetTrimmed function. Specify the GetTrimmed function's l, r, b, and t
argument values in camera coordinates, in which the untrimmed x and y coordinates fall in the range
(-1.0, +1.0).

Interpolating Rotation of the Coordinate System

You can use the MarkerTrans_cl class's SetMildRotation and SetAccelerationOnMildRotation
member functions to specify how to interpolate coordinate system rotation during the process of
estimating the marker coordinate system.

If you specify b to be true in the SetMildRotation function, then whenever the previously estimated
and current coordinate systems are judged to have similar rotation, the previous coordinate system is
applied to interpolate the current coordinate system by the ratio (ranging from 0.0 to 1.0) specified by
t. In other words, the current coordinate system is used when t is 0.0 and the previous coordinate
system is used when t is 1.0. The Marker_cl class's SuppressShake function will not make any
corrections while this interpolation is in progress. Interpolation is skipped when b is false.

The SetAccelerationOnMildRotation function takes the same b and t arguments as the
SetMildRotation function, but is different because it uses the similarity between the current and
previous motion of the marker position to determine whether to perform interpolation. This
interpolation method allows the coordinate system to quickly track rotations that are judged to have a
near-uniform speed and disregard shaking hands and other transient vibrations.

3.7.3 Converting from Marker Coordinates to Camera Coordinates

You can use the Transformation_cl class's GetMTX34 member function to get a matrix that converts
marker coordinates into camera coordinates.

Code 3-11 Class That Converts Marker Coordinates into Camera Coordinates

class mw::nar::Transformation_cl

{

public:

 void GetMTX34(nn::math::MTX34& r_Mtx) const;

};

The application does not create an instance of the Transformation_cl class, but instead uses the
GetrTransformation member function of the detected marker's class (Marker_cl) to get an instance
as shown in the following sample code.

CTR AR Library Programming Manual

CTR-06-0155-001-D 20  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

Code 3-12 Sample Code to Get a Transformation Matrix from a Detected Marker

nn::math::MTX34 mtx34;

mw::nar::Marker_cl* pMarker;

pMarker = markerData.GetrDetectingMarkerList().GetpMarker(0);

pMarker->GetrTransformation().GetMTX34(mtx34);

3.8 Working with the Stereo Cameras
This section provides precautionary information related to using the stereo cameras installed on the
CTR system to create an AR application that supports stereoscopic 3D images.

3.8.1 Camera Settings

This section explains recommended settings, precautions, and other information related to using
stereo camera images as the input images.

3.8.1.1 Turn Off the Noise Filter

We recommend that you turn off the noise filter when using the stereo cameras.

3.8.1.2 Synchronize the Stereo Cameras' V-Sync

If the V-Sync timing is not synchronized between the stereo cameras, the images captured from the
left and right cameras may have subtle differences that affect the stereoscopic image. We
recommend that you call the nn::camera::SynchronizeVsyncTiming function to synchronize the V-
Sync between the left and right cameras before beginning to get camera images, and call this
function again whenever a large V-Sync timing discrepancy develops.

3.8.1.3 Synchronize the Stereo Cameras' Brightness

We recommend that you implement your application in a way that keeps the brightness of the left and
right images as close as possible. Ways to do this include: calling the
nn::camera::SetBrightnessSynchronization function to synchronize the stereo cameras'
brightness; and taking parallax into account when you set the region on which automatic adjustments
to the white balance and exposure will be based.

3.8.1.4 Avoid Variable Frame Rates

The V-Sync timing of the stereo cameras is very likely to lose synchronization when you use a
variable frame rate.

3.8.2 Measuring the Distance to the Marker

Carry out a zero-vector transform using a transformation matrix from the marker coordinate system to
the camera coordinate system to get the marker position in the camera coordinate system. The
marker position Z-axis value obtained from the transform is the distance from the camera to the
marker in the camera coordinate system. Use this value as the ratio of the distance between the
stereo cameras in the camera coordinate system (i.e., the scale spacing) to the actual distance
between the stereo cameras in order to determine the actual distance.

AR Library Programming Manual CTR

 2011–2014 Nintendo 21 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

Calculate the scale spacing as follows.

Taking the transformation matrix as the translation from the origin, multiply this by the inverse of the
transformation matrix used for the camera on the other side to translate the origin from the marker by
the camera’s placement width amount. In other words, for a marker position of 𝑂, and transformation
matrices obtained from the left and right camera image captures of 𝑇𝐿 and 𝑇𝑅, the scale spacing
would be a length of 𝑂𝑇𝑅(𝑇𝐿)−1 (left and right can be swapped).

Figure 3-4 Calculating the Scale Spacing

O

Translation
by TL

Translation
by TR

Translation by
the inverse of

TL

Scale Spacing

Left
Camera

Right
Camera

Marker

Provided that the optical axis for the left and right cameras is completely horizontal, you only need to
calculate the scale spacing once. However, if the optical axis is not horizontal due to stereo camera
placement error, the scale spacing will change even after calibrating, depending on the distance to
the marker. Also, if there are differently sized markers, the scale spacing value can change greatly.
Note that extreme variations in the scale spacing value can lead to unexpected differences in all
processing and displays that are based on it.

Note: The horizontal translation from the calibration data (translation) includes the actual stereo
camera placement width, in pixels. The placement width value (distanceCameras), however,
is specified in millimeters.

3.8.3 Reducing the Processing Load for Marker Detection

When getting the scale spacing, detect the marker from the captured image for one side, then
translate the transformation matrix from the marker coordinate system in the X direction by just the
scale spacing amount to derive the transformation matrix for the other side. This allows you to finish
marker detection with just one image capture, thereby reducing the processing load. When using this
method, Nintendo recommends re-measuring the scale spacing at regular intervals, as this also helps
accurately place a 3D model at the location of the marker.

In addition, use whether the marker is to the left or right of the center of the captured image to
determine whether to use the captured image from the left or right camera (i.e., to select the main
camera) and thereby keep the marker fully within the field of view.

CTR AR Library Programming Manual

CTR-06-0155-001-D 22  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

4 Description of the Sample Demos
This chapter explains the AR library sample demos in $(CTRMW_NAR_ROOT)/sampledemos, the
classes used by these demos, implementation notes, and so on.

4.1 Sample Demos
The following table shows all of the sample demos that are currently provided.

Table 4-1 Sample Demos

Sample Demo Overview

simple This demo detects the "?" marker in camera images and renders a cube on top of it.

stereo This demo extends the simple demo with support for stereo cameras.

marker_maker This demo creates pattern data to be used in a marker template.

multi_marker This demo recognizes multiple markers and renders a cube on top of each one.

4.2 Common Definitions Between Sample Demos
The nar_common folder has definitions of classes and structures that are common to all the sample demos.

AR Library Programming Manual CTR

 2011–2014 Nintendo 23 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

Table 4-2 Common Definitions Between Sample Demos

Files Description

• narDemoCamera.h
• narDemoCamera.cpp

These files define the CameraProcess_cl class that controls the CAMERA
library.
This class only captures images and handles errors; the camera(s) must be
configured separately.

• narDemoY2r.h
• narDemoY2r.cpp

These files define the Y2RProcess_cl class that controls the Y2R library,
which converts YUV to RGB, and the Y2RJob_cl class for conversion requests.
Except for the input image size, all the conversion settings used are listed below.
• Input format: INPUT_YUV422_BATCH
• Output format: OUTPUT_RGB_16_555
• Output data sequence: BLOCK_8_BY_8
• Output data rotation: ROTATION_NONE
• Conversion coefficients: Return value of

nn::camera::GetSuitableY2rStandardCoefficient()
• Alpha value: 0xFF

• narDemoPhoto.h
• narDemoPhoto.cpp

These files define the Photo_cl class that maintains and renders the camera
images converted to RGB, as well as the debugging images.

• hatenaMarkerTemplate.h
• hatenaMarkerTemplate.cpp

These files define the marker template structure g_hatenaMarker for "?"
markers.

• cube.h
• cube.cpp

These files define the cube that is rendered on top of a marker and the
Cube_cl class that renders it.

4.3 Common Behavior Between Sample Demos
When you create a CCI file using a Debug or Development build and then run it in the debugger, you
can press the X Button to show or hide debugging information.

You can use the following buttons to toggle whether to render the corresponding type of debugging
information while debugging information is being displayed.

• Up on the +Control Pad: Edge candidates
• Left on the +Control Pad: Mesh for evaluating a marker
• Right on the +Control Pad: Slope

4.4 simple Demo
This demo uses a marker database in which only a "?" marker has been registered. It detects a
marker and renders a cube on top of it.

In this and other sample demos, several threads other than the main thread are running. These
threads are defined by three classes: CameraModule_cl, ARProcess_cl, and Y2RProcess_cl. The
following figure shows how they work together.

CTR AR Library Programming Manual

CTR-06-0155-001-D 24  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

Figure 4-1 Processing Outside of the Main Thread

Configure the image capture
environment settings

CameraModule_cl

Start thread

Finish capturing

ARProcess_cl

Allocate a memory region for
camera images

Start thread

Register markers

Wait for capturing to finishHandle capture operations

Request RGB conversion from
the Y2R library

Detect markers

Wait for RGB conversion to finish

Y2RProcess_cl

Allocate a memory region for
captured images Configure RGB conversion

Start thread

Wait for a request to start RGB
conversion

Perform RGB conversion

Finish RGB conversion

Process flow

Notification

The main thread displays information that becomes displayable after the ARProcess_cl class's
thread has finished detecting markers and converting the captured camera images into RGB (such as
the captured images converted to RGB and marker detection results).

Edit the Initialize function in the CameraModule_cl class if you want to detect markers when some
visual effect has been applied to the camera images, or if you otherwise want to change the settings
for the environment in which images are captured.

To detect your own original markers, edit the first part of the ARProcess_cl class's process function
where it registers marker templates with the marker database.

The sizes of both the camera image and the texture are defined in narDemoConfig.h.

4.5 stereo Demo
This demo extends the simple demo with support for the stereo cameras. Both demos have the
same basic process flow, but this one has changed the CameraModule_cl and ARProcess_cl classes
to support images captured from two cameras. Also, the StereoSetting structure performs
calculations needed for stereoscopic display.

4.6 marker_maker Demo
This demo creates the pattern data that is defined in marker templates. You can use the Y Button to
switch between marker detection mode and marker registration mode.

The demo initially launches in marker detection mode. Because the marker template for "?" Cards
has already been registered with the marker database, the demo detects "?" Cards and renders
cubes on top of them. The lower screen shows the scores of the detected markers.

AR Library Programming Manual CTR

 2011–2014 Nintendo 25 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

In marker registration mode, regions thought to be markers in an input image are displayed as marker
candidates on the lower screen. Up to five marker candidates are displayed; these are assigned
indices 0–4 in order from left to right. The number displayed after Marker Pattern is the index of the
selected marker candidate. Press Left and Right on the +Control Pad to change the index and select
a marker candidate to register.

Press the A Button to register a marker. Once a marker is registered, the demo will detect it in marker
detection mode. Also, when a marker is registered, its pattern data is displayed on the debugger
console. You can copy the displayed data into the pattern member variable of a marker template
structure and use it with no modification necessary.

To use markers with a black border around a white region (where the marker design has a white
background) instead of markers with the default white border around a black region (where the
marker design has a black background), uncomment the line
narImage.SetBorder(mw::nar::e_BorderBlackWhite); in the ARProcess_cl class's process
function and then rebuild the demo.

Note: The AR Games built-in application uses template data that was created by the marker_maker
demo in a bright environment, which was assumed to be similar to the environment where
users would actually play.

4.7 multi_marker Demo
This demo detects markers using a marker database in which multiple marker templates have been
registered. This is based on the simple demo and includes registered marker templates for the six
AR Cards bundled with the CTR system.

CTR AR Library Programming Manual

CTR-06-0155-001-D 26  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

5 Example of Practical Use in an Application
This chapter introduces a particular implementation of the library in an application.

5.1 Identifying Numerous AR Cards
NARLib is a library made for the purpose of detecting multiple types of markers in real time, so if the
number of registration markers increases, its recognition accuracy gets worse and it becomes difficult
to process them in real time. This example introduces a way for the application to detect numerous
markers in real time.

5.1.1 Using the Colorbit Library

The Colorbit Middleware SDK for CTR package provided separately (hereafter referred to as the
Colorbit library) can be used to identify numerous markers with high accuracy. The Colorbit library
recognizes combined colored cell markers and identifies the corresponding IDs. By using Colorbit for
recognition in addition to the recognition done with the MarkerDetector_cl::Detect function in
NARLib, the accuracy of marker recognition can be improved.

However, the Colorbit library does not have a means of picking out the Colorbit portion of input
images, so it is necessary for the developer to get the Colorbit portion from the camera image. By
using mw::nar::MarkerAnalizableData_tc, the class used when detecting markers with NARLib,
you can get the coordinates of the sampling points of the detected marker and the Colorbit
coordinates. Also, if you create the design of the Colorbit portion along with the marker determination
mesh from Table 3-4 Types of Debugging Information, you can create a Colorbit that is more easily
extracted during marker detection.

Colorbit cells can be placed as desired, but it is best for the cells not to be placed where they would
overlap with sampling points. The cell color changes if the number assigned to the cell is changed,
which affects marker recognition.

For more information about how to use the Colorbit library, see the Colorbit SDK Programming
Manual and Development Guide for Applications That Use Colorbit.

5.1.2 Real-Time Detection Processes

As the number of markers to register becomes greater, the database for detecting the markers also
becomes larger. With a larger database; it takes longer to detect markers and makes it difficult to
track markers in real time. To solve this problem, the database is separated into a database for
detecting new markers (the detection database) and a database for tracking the markers that have
already been detected (the tracking database), each of which is processed in a separate thread. This
enables you to track markers in real time even if there are many of them being registered in the
database.

The process for detecting new markers detects markers included in camera images from the
detection database. The combined search using Colorbit (as described in the previous section)

AR Library Programming Manual CTR

 2011–2014 Nintendo 27 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

enables you to detect markers with a high degree of accuracy. The markers detected this way are
registered in the tracking database and used during the tracking process. At that point, the marker
images obtained from the camera images are used as markers to register in the tracking database,
which means that the tracking database is created in a way that conforms to the environment where
the game is being played.

The process for tracking markers detects markers included in the tracking database from the camera
images. Because only markers that have already been detected are included in the database,
markers can be tracked very rapidly.

By running these processes in separate threads, you can detect markers coming in with new camera
images while also rapidly tracking the markers that have already been detected.

5.1.3 Process for Improving Accuracy During Tracking

When tracking, recognition with Colorbit is usually not performed so that processing can be handled
quickly. However, if a particular marker's recognition score continues to be low when tracking, Colorbit
recognition is used to verify whether that marker is the correct one. Also, if the verification result is
that the marker is recognized as the correct one, the marker is re-registered in the tracking database.
This makes it possible to prevent the recognition rate from declining due to the effects of the
environment while still tracking markers quickly.

5.2 Recognizing Markers for Posters
If an AR marker that has been affixed to a wall as a poster is recognized, the character for the 3D
model is shown standing perpendicularly to the wall. To prevent this, when the marker printed on the
poster is recognized, you must correct it so that the character stands horizontally against the wall.
The following approaches are some of the ways to determine whether the marker that was
recognized is one for a poster.

The first approach uses Colorbit. Include a Colorbit in the marker for the poster, and embed a flag in it
indicating that this is a poster. When recognizing markers, use Colorbit recognition in addition to
determine whether the target is a poster.

The second approach uses the CTR system's gyroscope. Get the system tilt using the gyroscope,
and use the system tilt to guess whether the marker is oriented horizontally or vertically. If it seems
that the orientation is vertical, recognize that the marker is a poster. Because the gyroscope is
attached to the bottom of the CTR systems bottom screen, the camera cannot be used to accurately
acquire orientation.

In this way, if the marker is recognized as being printed on the poster, you can make the character
face forward by turning the front of the 3D model toward the camera.

If the character is shown horizontally with respect to the marker, the model could be shown from its
bottom angle. To suppress this effect, when you attempt to view the model from a position slightly
below the model, process it so that the character is standing on the card surface.

CTR AR Library Programming Manual

CTR-06-0155-001-D 28  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

Revision History

Version Revision Date Category Description

1.3 2014/04/17 Changed
• Table 3-1 Process Stages and Related Classes, 3.5 Detecting

the Markers
Added a description of MarkerDetectWorkStrict_cl.

1.2 2013/01/30

Added • 5 Example of Practical Use in an Application

Changed

• 4.2 Common Definitions Between Sample Demos
Changed the narDemoY2r.cpp conversion coefficient to the
return value of the
nn::camera::GetSuitableY2rStandardCoefficient
function.

1.1 2011/07/29

Added
• 3.8.2 Measuring the Distance to the Marker
• 3.8.3 Reducing the Processing Load for Marker Detection

Changed

• 3 How to Use the Library
Figure 3-1 Corrected typos (JP document only)

• 3.3 Preparing the Marker Template
Changed wording.

• 3.4.2 Debugging Information
Table 3-4 Corrected typos (JP document only)

• 4.4 simple Demo
Changed wording.

1.0 2011/05/18 — Initial version.

AR Library Programming Manual CTR

 2011–2014 Nintendo 29 CTR-06-0155-001-D
CONFIDENTIAL Released: June 3, 2014

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

CTR AR Library Programming Manual

CTR-06-0155-001-D 30  2011–2014 Nintendo
Released: June 3, 2014 CONFIDENTIAL

© 2011–2014 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	1 Introduction
	1.1 Glossary

	2 Building
	2.1 Adding the Include Path
	2.2 Adding Compiler Flags
	2.3 Adding Library Files

	3 How to Use the Library
	3.1 Required Header Files
	3.2 Initialization
	3.3 Preparing the Marker Template
	3.3.1 Marker Database

	3.4 Registering the Input Image
	3.4.1 Camera Settings When Camera Images Are Used as Input
	3.4.1.1 512x384 Pixels Is the Recommended Camera Resolution
	3.4.1.2 Set a High Brightness
	3.4.1.3 Set a Low Exposure
	3.4.1.4 Avoid Effects That Make Large Changes to the Hue

	3.4.2 Debugging Information

	3.5 Detecting the Markers
	3.6 Getting the Detection Results
	3.7 Using the Detection Results
	3.7.1 Detected Marker Information
	3.7.2 Estimating the Marker Coordinate System
	3.7.3 Converting from Marker Coordinates to Camera Coordinates

	3.8 Working with the Stereo Cameras
	3.8.1 Camera Settings
	3.8.1.1 Turn Off the Noise Filter
	3.8.1.2 Synchronize the Stereo Cameras' V-Sync
	3.8.1.3 Synchronize the Stereo Cameras' Brightness
	3.8.1.4 Avoid Variable Frame Rates

	3.8.2 Measuring the Distance to the Marker
	3.8.3 Reducing the Processing Load for Marker Detection

	4 Description of the Sample Demos
	4.1 Sample Demos
	4.2 Common Definitions Between Sample Demos
	4.3 Common Behavior Between Sample Demos
	4.4 simple Demo
	4.5 stereo Demo
	4.6 marker_maker Demo
	4.7 multi_marker Demo

	5 Example of Practical Use in an Application
	5.1 Identifying Numerous AR Cards
	5.1.1 Using the Colorbit Library
	5.1.2 Real-Time Detection Processes
	5.1.3 Process for Improving Accuracy During Tracking

	5.2 Recognizing Markers for Posters

	Revision History

