

 2010-2011 Nintendo CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

CTR Developer's Guide
Graphics: Command Lists

Version 2011/06/20

The content of this document is highly confidential
and should be handled accordingly.

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 2  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 3 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

Table of Contents

1 Introduction ... 4

1.1 Relevant Architectural Details ... 4

1.2 Primitives... 5
1.2.1 Command Requests .. 5
1.2.2 Command List Object .. 6
1.2.3 3d Command Buffer .. 6
1.2.4 Register Update Commands ... 7

2 Standard Command List Object Operation ... 8

2.1 Accumulate ... 8

2.2 Run .. 8

2.3 Clear .. 11

2.4 Basic list management .. 11

3 Advanced topics ..13

3.1 “Display Lists” ...13

3.2 GPU State Management ...14
3.2.1 “Zero State” and deltas ..14
3.2.2 SDK Support for state management ...15

3.3 Copying data vs. referencing existing data ...16

3.4 Other Cautions ..17

4 Notes about the DMPGL driver ...18

5 Tips for Drawing Stereoscopic Scenes ...19

5.1 History ...19

5.2 Improved Method ..19

6 Summary ...21

Appendix A Glossary ..22

Figures
Figure 1-1 Bus Connections of Various Components in CTR .. 4
Figure 2-1 CPU pushes the next Command to the GPU .. 9
Figure 2-2 GPU processes a non-render Command .. 9
Figure 2-3 GPU processes a Render Command ..10
Figure 2-4 GPU is done processing the Command ..10
Figure 2-5 The driver prepares to dispatch the next Command ... 11
Figure 3-1 nngxAdd3dCommand results ..13

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 4  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

1 Introduction
Nintendo’s CTR platform is powered by a “PICA” graphics chip that was developed by Digital Media
Professionals (DMP). This document explores methods by which commands can be sent to the PICA
chip for processing, and is intended as a supplement to the “DMPGL20_system_API_specificaton.pdf”
file. Readers who are new to CTR may want to read this document before reading the above-
mentioned DMP document.

Readers are expected to be familiar with basic terms used to discuss 3d graphics and rendering, and
should also be comfortable with the basic terminology used in CTR’s nngx library. We will, however,
highlight terms that may be unfamiliar to readers who have not worked on embedded systems or on
DMP-based hardware before. Terms with intense emphasis will be mainly explained inline. Terms
with subtle emphasis will be partially explained inline and also explained later on in the document in
more detail. Terms that relate to C program code are written in Courier New font.

While this document refers specifically to the DMPGL 2.0 rendering API (which is similar to OpenGL),
the material herein is also applicable to other Nintendo-provided APIs such as GD, GR, and
NintendoWare for CTR.

1.1 Relevant Architectural Details
The PICA graphics chip is connected to the main system bus. It is able to communicate with other
clients (such as the ARM11 MPCore CPU and “FCRAM” Main Memory) that sit on the bus. PICA can
communicate with other clients in a number of ways. First, portions of PICA’s control registers are
memory-mapped into the CPU’s address space. These registers are only accessible by the graphics
driver, and the driver is ultimately in charge of accessing those registers to make requests of PICA.
Secondly, PICA can initiate load and store data requests to the bus as needed while generating
image data. These requests are all targeted at FCRAM. Finally, PICA can send interrupt signals to the
CPU. The signals will be routed to the graphics driver for processing.

Behind the PICA chip is a small area of memory called VRAM. All access to VRAM is controlled by
the PICA GPU. To move data into or out of VRAM, requests must be made to the PICA graphics chip.
Thus PICA acts as the gate-keeper to VRAM and as such is the “owner” of the VRAM hardware.

Figure 1-1 Bus Connections of Various Components in CTR

Main Memory
“FCRAM”

ARM 11
MPCore PICA DSP

VRAM

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 5 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

1.2 Primitives

1.2.1 Command Requests

For CTR, the core unit of execution control at the driver level is called a Command Request.
Command Requests are small, fixed-sized chunks of memory that contain high-level driver
instructions. These instructions eventually get passed on to the graphics hardware. Upon receiving
one of these instructions, the graphics hardware will execute the command.

The types of Command Requests are as follows:

• DMA
o Instructs the PICA GPU to load a texture or vertex buffer into VRAM from a source outside

of VRAM. No conversion is done on the data being loaded, and so the data should be in a

“PICA-native” format. PICA will issue the load request to the bus, and manages the

complete transfer of the data from FCRAM.

• Render
o Instruct the PICA GPU to fetch register update commands from a source located outside of

VRAM. The data contained therein is used to set graphics rendering state in PICA and to

kick off drawing of various types of geometry.

• Memory Fill
o Instructs the PICA GPU to “memset” the color and/or depth buffers in VRAM.

• Post-Filter
o Instructs the PICA GPU to copy image data stored in VRAM to a location outside of VRAM

or to another location in VRAM. During this process PICA will convert the data from the

PICA-native format to a non-PICA-native format and [optionally] anti-alias the image, thus

rendering it suitable for display on the LCDs or for further conversion in preparation for

storage to NAND or SD media. PICA will issue the store request to the bus if necessary,

and manages the complete transfer of the data to FCRAM.

• Copy Texture
o Store PICA-native image data from VRAM to another location in VRAM, or to a location

outside of VRAM. No conversion is done on the data being stored. PICA will issue the store

request to the bus if necessary, and manages the complete transfer of the data to FCRAM.

As mentioned above, these are the primitives that we send to the GPU. Everything else that PICA
needs in order to do rendering is built on top of this foundation.

Notes:

• Each request is approximately six 32-bit words.
• Command Requests are only created by the nngx driver. They may not be generated off-line in a

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 6  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

tool, etc.

1.2.2 Command List Object

When looking at the set of Command Requests, one might come to the conclusion that the majority of
OpenGL APIs would have to somehow map to the “Render” command. This is in fact correct.
Furthermore, one might guess that the request types other than “Render” probably encompass less
than a dozen OpenGL APIs in total. That is indeed the case.

From this, it makes sense that in order to draw a scene one will need a lot of “Render” commands
sent to PICA, along with some “DMA” and “Copy Tex” commands, and only a few “Memory Fill” or
“Post-Filter” requests.

To handle the sequence of Command Requests that needs to be queued up and sent to PICA, the
Command List Object was created. It contains house-keeping information that the graphics driver
needs for basic operation, and it also contains a pointer to an array of fixed-sized Command Request
structures. Command List Objects are exposed via the “nngx*Cmdlist*” APIs. Programmers are
allowed to control the number of Command Request structures within a Command List Object via the
“requestcount” parameter of nngxCmdlistStorage. There is one entry / command request per
structure.

Along with the requestcount, one can also specify bufsize. bufsize controls the size of the 3d
Command Buffer, which we’ll explain below.

Please note that it’s important to monitor the resources used in each Command List object via pname
arguments of NN_GX_CMDLIST_USED_BUFSIZE and NN_GX_CMDLIST_USED_REQCOUNT to the
nngxGetCmdlistParameteri API. The necessary sizes of each one may vary drastically based on
your approach to rendering. We recommend that you periodically monitor these counts during product
development and re-balance these aspects of your Command List Objects as appropriate.

1.2.3 3d Command Buffer

There is an interesting thing to know about the “Render” Command Request. That is: it simply takes a
pointer to a memory address and a size (in bytes) to fetch. When PICA executes this command it will
DMA the contents of that memory into its command processor wherein the data is interpreted as
Register Update Command packets. These packets are designed to update one or more 32-bit
registers within PICA. Nearly all of these registers control aspects related to 3d rendering such as
lighting controls, material settings, vertex shader program and constant uploads, etc. Through use of
these packets, one typically updates the registers that control graphics state then kicks off rendering
by sending packets that contain vertex information of some sort. Therefore Register Update
Command packets are instrumental in achieving work related to 3d rendering.

When the Command List Object was designed, it was decided that it should also contain a pointer to
a chunk of RAM where Register Update Command packets could be stored. Since this chunk of RAM
is a buffer that will hold these command packets, it is named the 3d Command Buffer. The buffer is
very important because it used as the storage area where results of [the vast majority of] OpenGL API
calls + their parameters are held after being translated into Register Update Commands for PICA.

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 7 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

There is one 3d Command Buffer per Command List Object.

So as you can see, the 3d Command Buffer is used in conjunction with the “Render” Command
Request; each “Render” command points to a location within the 3d Command Buffer where Register
Update Command packets have been queued. For a given Command List Object, said buffer is
typically the one associated with said object. This is by convention and standard procedure only;
exceptions and alternate approaches will be explained later in this document.

1.2.4 Register Update Commands

As mentioned above, these are chunks of data partitioned into packets which load values into PICA’s
internal registers. The registers and their payloads are thoroughly described in the
“DMPGL20_system_API_specification.pdf” document included in the SDK. The process of loading
data into a register is one-way: write-only. No dynamic read-modify-write operation can occur when
updating PICAs internal registers. However, a partial-write may take place to a register if one does
not wish to update the entire 32-bits of it.

Developers are strongly encouraged to pre-build their own Register Update Command packets and
3d Command Buffers via tools or our APIs as part of the game’s development. By building this data
outside the game, less work will be required at runtime since the data will already be in a PICA-native
format and ready for rendering.

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 8  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

2 Standard Command List Object Operation

2.1 Accumulate
On CTR, the basic operation of Command List Object management is as follows. OpenGL APIs get
translated into either Register Update Command packets (more common) or Command Requests
(less common), and placed into the appropriate area of the currently bound Command List Object.
That area is either the 3d Command Buffer or the Command Request list, respectively. So long as an
OpenGL API translates into a Register Update Command, the driver can simply append it to the 3d
Command Buffer. When an OpenGL API occurs that cannot be translated to a Register Update
Command packet, the driver does a couple of things. First, it appends a special Register Update
Command packet into the 3d Command Buffer which will tell the hardware to generate an interrupt.
This is done so that the driver knows when the Render command has completed, thus allowing it to
dispatch another Command Request. This is known as a “split” of the 3d Command Buffer. Next, the
driver computes the area within its 3d Command Buffer that will be sent as part of the “Render”
Command for the queued command packets, and then creates the Render Command Request entry
for them. This request is appended onto the Command Request list within the Command List Object.
Finally, the appropriate Command Request for the given OpenGL API is appended to the Command
List Object’s Command Request list.

When another OpenGL API is encountered that will result in a Register Update Command packet, the
packet is simply written to the next available address within the 3d Command Buffer (i.e., the address
after the split). The process described above is repeated until either the Command List Object runs
out of resources (i.e., the 3d Command Buffer is full or there are no more slots in the Command
Request list), or the developer requests that the Command List Object be “run”.

2.2 Run
When a command list is set to “Run”, the driver sequentially walks, over time, through the list of
Command Requests and sends each one to PICA. On the initial “Run” request, the driver pops the
first queued Command Request packet out of the currently bound Command List Object and sends it
to PICA. Once PICA has completed processing that request it sends an interrupt to the driver. Part of
the nngx driver will be awoken because of this interrupt, and in the interrupt handler the driver will
send (“kick”) the next command in the list to the hardware.

This process continues until either all queued items in the command list have been processed or until
the developer requests that the driver “Stop” the Command List Object. It should be noted that the
Command List Object tracks which commands in its Command Request list have been run, so that if a
“Run” is executed after a “Stop”, playback of the Command Requests resumes where the driver left off.

If a Command List Object is in the “Run” state but has stopped because all Command Requests were
already sent to PICA (i.e., this list is exhausted), then the driver will send the next Command Request
that comes in as soon as it can. Therefore if an OpenGL API occurs that generates a non-Render

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 9 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

Command Request, then that request will be sent to PICA immediately for processing. Any OpenGL
API that results in a Register Update Command packet will simply append the packet(s) into the 3d
Command Buffer and no “Render” command will be sent at that time. Only if a “split” occurs (as
described earlier) will a “Render” command be sent. This is why immediate mode Command List
Object management is not so efficient.

To summarize: “running” a Command List Object is not a blocking operation – it is an asynchronous
operation. It is a series of small “send next Command Request to PICA hardware” operations that
occur over time.

Figure 2-1 CPU pushes the next Command to the GPU

ARM 11
MPCore PICA

Command List Object

Open GL / nngx Driver

Command requests

Fetch next Command Request from the list and push it to PICA.1

Figure 2-2 GPU processes a non-render Command

ARM 11
MPCore

Command List Object

Open GL / nngx Driver

Command requests

For commands other than Render, PICA performs the request
by interacting with VRAM or FCRAM.2a

FCRAM

VRAM

PICA

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 10  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

Figure 2-3 GPU processes a Render Command

Command List Object

Open GL / nngx Driver

Command requests

2b For Render Commands, PICA directly fetches Register Update Command
packets from FCRAM.

PICAARM 11
MPCore

Located in FCRAM
Device Memory so
that PICA can read
from it directly

Render this stuff

3D Command Buffer

Register Update Command

The packets contain state updates,
shader programs and uniforms, and
triangle rendering commands (to
name a few).

Figure 2-4 GPU is done processing the Command

ARM 11
MPCore

Command List Object

Open GL / nngx Driver

Command requests

PICA sends an interrupt to the CPU. This tells the driver that
the Command Request has been fully processed.3

PICA

Done!

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 11 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

Figure 2-5 The driver prepares to dispatch the next Command

ARM 11
MPCore

Command List Object

Open GL / nngx Driver

Command requests

The driver marks the command request as complete. The will repeat at
Step 1 on the next command in the Command Request List.

4

Next command in the list

2.3 Clear
This resets all book-keeping data in a Command List Object, thus allowing it to be used as if it was
new. One would typically do this once per frame to any Command List Object that is used to manage
the majority of rendering. Command List Objects may not be cleared while in the “Run” state.

2.4 Basic list management
The CTR platform provides unique challenges to developers because one has to effectively manage
the creation of 3 separate screens worth of data (upper screen left-eye, upper screen right-eye, and
lower screen) per frame when ULCD is being supported. When ULCD is not being supported then 2
unique screens worth of data (upper screen, lower screen) must be managed per frame.

There are a couple of options for creating and managing Command List Objects for these screens in
your game or application.

Option 1: Immediate mode. A single Command List Object is running while simultaneously
accumulating Command Requests. This approach is not terribly good for CPU/GPU concurrency
because the GPU may be stalled waiting while the CPU is doing the operations needed to create the
next set of Command Requests and Register Update Command packets. Use of well-placed Split
commands can help the CPU/GPU concurrency issue, but these are not an ideal solution. Additionally
it is not well suited to support dual view rendering for ULCD and is generally a poor choice for any title
looking to make the best possible use of CPU and GPU time. On the positive side, this option is easy
to start out with and doesn’t require as much memory as option #2.

Option 2: Deferred mode. This option requires two (or more) Command List Objects to be managed.
During even frames the CPU uses the first Command List Object to create the upcoming frame while
the GPU renders commands that were previously accumulated in the second Command List Object.
On odd frames, the GPU renders the data that accumulated in the First Command List Object while

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 12  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

the CPU writes the upcoming frame to the second Command List Object. This option is very good for
CPU/GPU concurrency because each client can focus on its job and not wait for the other. Note that
you still have the issue of what to do for ULCD.

One may wish to dedicate a unique Command List Object to each target screen, or one can try to use
only one Command List Object to handle everything. At this time there is no clear answer on what
kind of setup to use, but we’re leaning towards recommending unique Command List Objects per
screen, each double-buffered.

Please note that you must wait until the currently bound Command List Object has completed
execution before it will it be safe to switch to a different Command List Object or to copy the color
buffer to a display buffer. One can make use of the Command List Object callback system to
transition from the processing of one Command List Object to another.

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 13 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

3 Advanced topics

3.1 “Display Lists”
Game developers are generally used to the concept of a “display list”: a chunk of memory that has been
loaded with hardware-specific commands for rendering an object. Typically one issues a “branch”-like
command to the GPU (or corresponding DMA controller) which will instruct it to detour from the current
instruction stream and instead go forth and process data from the display list. Upon completion of
processing a display list, the hardware is expected to resume processing at the point just past the
branch (much like what happens with function calls on a CPU). Display Lists are often the fastest, most
efficient way to draw geometry, and they are easily generated outside the game during the game’s
development. Developers like to use them because they require minimal processing at runtime.

Since PICA works differently than other rendering hardware you may be familiar with, you have a few
options to consider when thinking about the use of Display Lists for CTR. One option is to simply use
nngxAdd3dCommand with a false copycmd parameter. This will insert a “Render” Command Request
into the currently bound Command List Object which points to a Register Update Command packet
stream of your choosing. However, please be aware that this may not be sufficient to draw complex
objects. Complex objects often need material changes or other processing which may involve multiple
DMA or a Copy Texture commands. Note that the data being referenced at this address should not be
modified until you are certain that PICA has finished consuming it. Also, there is a fixed amount of
overhead each time a Render command request is processed by the graphics driver, so be aware
that references to external lists should be fairly large in size. This way the overhead is minimized.

Figure 3-1 nngxAdd3dCommand results

Command List Object

Open GL / nngx Driver

Command requests

2

ARM 11 pushes a Render
Command to PICA.

FCRAM

Register Update Command Packets1

1

2
PICA

ARM 11
MPCore

Previously Generated 3D Command Buffer

PICA fetches the Register
Update Command Packets
from some location outside
the currently bound
Command List Object.

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 14  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

In cases where more complex processing is necessary in order to draw an object, one might wish to
use a revised approach wherein you manually add all non-render commands necessary for drawing the
model into the currently bound Command List Object, and then use one or more nngxAdd3dCommand
at appropriate places in order to properly draw the model or scene. This method requires a lot of
knowledge about the “proper” way to draw the model at runtime and requires more CPU intervention
than what one would normally associate with a display list.

The second approach for Display Lists on PICA is to use an entirely separate Command List Object (or
equivalently saved data) which contains the entire set of Command Requests + Register Update
Command packets in order to draw the model. The nice thing about this method is that it’s basically self-
contained; it can have everything needed in order to completely draw a model. When one wishes to
draw the contents of this kind of display list on PICA, one can wait for the current Command List Object
to finish drawing, switch to a different one which contains the relevant data, and then run it. Or, more
commonly, one will copy the fixed-sized Command Requests from the display list into their currently-
bound Command List Object. This approach of copying Command Requests into the currently bound
Command List Object works best when in non-immediate mode, and is not CPU or memory-intensive.

We discuss the copying of data in more detail later in this document.

3.2 GPU State Management
When creating data for a game console or handheld device, one should always attempt to generate
as little as possible. The following equation is generally representative: More data = more bandwidth
needed + more processing cycles needed = less overall performance. Therefore, in regards to GPU
render states it is not advisable to build a full/complete state update into each display list. Conversely,
having too little state information in your display lists could very well cause you to end up with
corrupted graphics or (worse still) a crashed GPU. So, one should attempt to set only the minimum
state necessary in order to draw an object.

Of course, the question then becomes: “What state(s) should I set”? When working directly with the
OpenGL Library, this is not so difficult because you can set all states that you need and OpenGL will
only update the hardware states that are needed. Unfortunately, we have discovered that there is a
significant amount of overhead involved when one uses software to validate state before generating
commands for the GPU. This can negatively affect the performance of game titles.

When working with display lists that contain state changes things become a little more difficult
because a given display list may not fully configure the hardware, which would result in incorrect
rendering. But if one uses display lists only and tries to avoid software state checking of the GPU
state, how can one ensure that the hardware is in the correct state before a display list is run?

3.2.1 “Zero State” and deltas

One useful tactic to use when trying to determine what states one should set is to employ the concept
of a Zero State. A Zero State is the full set of all GPU render state settings, configured such that each
object in the game has very little state delta away from this base state. In other words, the Zero State
is the set of states that most objects within your game have in common.

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 15 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

When building display lists for a title that makes use of a Zero State, one will assume that the GPU is
already in the Zero State before the display list is called. So all you have to do is export the set of
states needed to move from the Zero State to the state needed for your object. This can be
considered the initial object state. If the Zero State is well designed, then this set of data is generally
minimal.

Additionally, once the object has been drawn but before the Zero State has been restored, the current
GPU settings can be considered the final object state. If a second instance is to be drawn
immediately after the first, it would be a waste to restore the Zero State, only to re-update the GPU to
the object initial state. So it is also prudent to create a final to initial object state reset state. Finally,
when one is done drawing via display list they should restore the hardware to the Zero State so that
the next display list can rely on the same assumption that this one did – namely, that the hardware is
in the Zero State.

Therefore, when creating and using display lists one will must have both the actual display list and the
following sets of the state updates which can be called either before or after the actual display list is
called:

• Zero State to initial object state.
• Final object state to Zero State.
• Final object state to initial object state.

Zero-state use can provide significant performance improvements, although there are some
downsides. One issue is that a fairly sophisticated toolset is required to generate the data. During
game production, changes to assets are quite common and so the optimal Zero State for a given
level of the game will most likely change over time, requiring the team to re-generate the ideal Zero
State for the area as well as re-update all model data for that area so that they conform to the new
Zero State.

3.2.2 SDK Support for state management

CTR SDK has support for generating “full” or “partial” state updates at runtime, in support of saving
(and eventual replaying of) of Command List Objects. These, however, refer to only to state
potentially modified by the APIs that are called before rendering takes place. They do not refer to the
entirety of the GPU render state! Also, please note that these APIs are not [directly] associated with a
Zero State concept as mentioned above. However these APIs are useful when attempting to manage
runtime creation and playback of Command List Objects, and can be used to help manage the
creation of Zero State deltas.

3.2.2.1 Caution 1

One has to be extremely careful when trying to save and play back Command List Objects at runtime
since state management can be tricky. Please be aware that each saved Command List Object or
saved 3d Command Buffer should not be played back unless the current GPU state is set exactly as
it was when the original data was created. Failure to do so could cause errors to occur during
rendering or (even worse) cause PICA to crash.

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 16  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

3.2.2.2 Caution 2

When a drawing command takes place, the driver scans its cached state settings and compares each
one to see if it is out of sync with what [it thinks] the hardware is set to. If necessary, Register Update
Command packets are generated to push all appropriate new or updated settings to the hardware. As
of SDK 2.3.4, the DMPGL software routines that do this are larger than the size of the onboard L1
instruction cache. It is therefore considered “expensive” to draw things due to the following factors:

1. The amount of CPU time involved in validating state and pushing appropriate updates to PICA.
2. The amount of CPU time involved in fetching instructions for the validation routines.
3. The fact that the validation routines will effectively wipe out anything your game had in the CPU’s

instruction cache. (Hence there will be a time penalty as your code is restored back into the CPU's
instruction cache after the drawing and validation code completes.)

This is why we recommend making as few draw calls as possible and making use of state caching.
Better yet is to use Zero State and Display Lists extensively during runtime so that this software
routine is executed as little as possible.

3.3 Copying data vs. referencing existing data
The decision to copy data for re-submission to PICA as opposed to referencing existing data comes
down to a number of factors. Aspects to consider are:

• Parallelism between the CPU and GPU.
• How far ahead in the frame one wishes to do their processing.
• Whether or not the data is being re-submitted to draw a new instance – if so it may need to be

modified instead of reused as is.
• The amount of memory available for spare buffers.
• The amount of CPU time and/or bus bandwidth that’s available for data copying.
• Management of data for ULCD rendering.
• Decision for which aspect(s) of a Command List Object should be copied vs. referenced: The 3d

Command Buffer or just the Command Requests.
• The number of Command Request slots one has allocated to their currently bound Command List

Object.

Let us expand on the list above by noting the following facts:

• Parallelism between the CPU and GPU is most efficient when each can work autonomously. Only by
working autonomously can the full potential of the machine be realized. If there is immediate
reliance of one upon the other, parallelism will effectively be lost.

• Waiting for a Command List Object to complete execution, then switching execution to a new
Command List Object is going to cause the CPU to waste valuable cycles. The CPU will be stalled
until the GPU completes all requests. This breaks parallelism.

• Copying of Command Request entries is always done via CPU.
o Command Request entries are small and fast to copy.

• Copying of 3d Command Buffer data is always done via CPU.

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 17 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

• Copying a 3d Command Buffer and then going back and patching it afterwards is extremely hard on
the data cache. To update / patch a Register Update Command packet you must first load it into the
data cache, modify it, then write it back out. If the data to be patched is no longer in the cache then
it must be reloaded. That takes time and is potentially a waste of bandwidth and CPU + bus cycles.

• Calls into the kernel to flush the CPU's data cache are EXTREMELY EXPENSIVE. One should seek
to do this no more than once per frame.

3.4 Other Cautions
When manually creating 3d Command Buffers yourself, you must put an Interrupt Generation
Command packet at the very end of the packet sequence for each unique “Render” Command
Request. Note that this is what the driver does when a “split command” is issued (either explicitly or
implicitly from various nngx or OpenGL APIs). Without the interrupt generation, the driver will not
know when it is ok to send the next queued Command Request to PICA, and the GPU will appear to
have frozen.

Please also note that Register Update Commands fetched by PICA must start on 16-byte aligned
address boundaries. Therefore you may need to pad the address of your 3d Command Buffer after
issuing an interrupt packet.

Additionally, due to HW errata you must take care when creating Render Command Packets yourself.
There are quite a few subtle rules that you must follow in order to prevent malfunction of the PICA
chip. Please check the PICA documentation carefully when building your own data. To help the
development community, SDSG has created a PC-side library that will emit the proper set of packets
for the entirety of PICA. The library, called the Pica Packet Project, can be used as a reference (we
include all source code, and it's well documented) or can be integrated into your asset conversion
pipelines to assist with creating data for PICA. It is written in .NET managed code (C#). Contact
support@noa.com if you would like to evaluate the library

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 18  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

4 Notes about the DMPGL driver
Some developers have stated that the GL driver seems slow, and have asked why this is. The answer
is that the GL driver must spend cycles at runtime doing two very important things.

1. Validating graphics state and creating Register Update Command packets as appropriate to
program PICA for the desired state.

2. Converting data to PICA-native entities (as appropriate).

Both of these procedures take time. Also, as mentioned above, the code is large and not cache-
friendly. If you use the DMPGL APIs, there is little that can be done at runtime to avoid such
processing. However, by building Register Update Commands ahead of time (during the production of
the game) you can completely avoid the time spent in (2). Use of Zero-state, as well as clever state
management can reduce the time needed for (1).

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 19 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

5 Tips for Drawing Stereoscopic Scenes

5.1 History
Drawing the scene for the upper screen in stereo has proven to be challenging. Nintendo's initial
guidance was to draw the entire left-eye view, and in the process track where any lighting vector or
matrix was sent to the hardware via packets. Next, duplicate the left-eye scene data to create the
right-eye scene, and go back and patch the appropriate lighting data & matrices into the right-eye
packets.

The above approach has many drawbacks. It proved challenging to ensure that the GPU state at the
end of the left-eye view was appropriate when starting to draw the right-eye view, and many teams
complained of GPU crashes when starting the draw of the right-eye view. Another downside was that
anything that was uploaded to VRAM was effectively uploaded twice (once per eye). Worse, things
that weren't uploaded to VRAM (being fetched from FCRAM instead) were referenced twice as well.
These items generally have low performance characteristics to begin with due to the need to acquire
the data from FCRAM, so referencing them twice from FCRAM compounded any performance
problems that teams were having. Finally, the act of patching the data really hurts overall
performance because non-sequential data needs to be fetched into the CPU's data cache, modified,
and then written back to device memory. This is an expensive operation in terms of the amount of
time required to perform this task. Afterwards, the CPU data cache much be flushed, and that's even
more expensive in terms of time. The net result is that it is very hard to maintain high-performing
software when using this approach.

5.2 Improved Method
Our approach to improve performance over the historical method is to try to reduce or eliminate all
the downsides of that method. The first major optimization is to remove all patching of data. This
means that the left-eye view and the right-eye view must be drawn in an interlaced way so that the
CPU will never need to make a second pass over anything that it generates. The benefits of this are
substantial, since much time is burned in the previous method due to loading / storing / flushing data
through the CPU cache. A bonus side-effect of interlacing the left- and right- eye views is that data will
only need to be uploaded into VRAM once since it will be used immediately for both the left- and
right- eye drawing. The downside is that one will need to have the color and depth buffers for each
eye in VRAM at the same time. Also, rendering algorithms will have to be modified to calculate both
the left- and right- eye matrices simultaneously so that the scenes can be drawn in an interlaced
manner. (We currently believe that the benefits of this method outweigh the downsides, and in our
internal tests the method was quite feasible. It also performed substantially better than the historical
method.)

Our tests show that the best performance is reached by:

1. Setting up state for the left-eye view of a triangle mesh, including:

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 20  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

a) Uploading as much texture [and optionally vertex/index] data into VRAM as possible.

b) Setting all appropriate render state, shader programs, etc.

2. Drawing the [sub]mesh (thus creating the left-eye view). This involves issuing packets containing
only "draw triangle" type commands, as well as any required post-draw packets. Do not change
any GPU state here other than that needed to kick off triangle drawing for one or more meshes.

3. Setting new addresses for the color and depth buffers so that the right-eye render target will be
used in the upcoming draw operation (this is a very small set of packets).

4. Update the HW for the right-eye view by sending any VS matrix constants and any other fragment
lighting data. The set of packet data here should be fairly small as well.

5. Re-issue the previous draw command(s) from step 2 that were used to kick off rendering (thus now
creating the right-eye view).

6. Repeat this process for each [sub]mesh that you draw.

With this approach, no time is spent waiting for the CPU to load/store/flush data from/to FCRAM. This
results in a significant time savings. Additionally, PICA is not being asked to load data into VRAM
twice, thus saving cycles both on the GPU side and the CPU side (due to fewer Command Requests
being issued in the first place, and fewer state-change packets being fetched into PICA for
processing). Some meshes may find a slight additional benefit due to having some of their data
already in the vertex or texture caches when the right-eye view is kicked off.

SDSG feels that any teams attempting to improve their rendering performance on CTR should
seriously consider such an approach. The approach benefits both the CPU and GPU, and reduces
overall load on FCRAM and the main system bus.

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 21 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

6 Summary
In this document we have discussed the internal components to Command List Objects and explored
their high-level and low-level processing in an effort to further educate you on the way our platform
operates. We have discussed three major techniques (use of Zero State, use of Display Lists, and
high-performance ULCD scene management) that are designed to help you get the most out of the
available CPU and bus cycles on CTR. With this knowledge you should be armed with a great
starting point from which you can begin exploring how to get amazing results out of this particular
aspect of Nintendo’s CTR platform.

Questions? Comments? Please send us any feedback you have by emailing

support@noa.com and using a subject line beginning with: [CDG]

We are happy to take your suggestions for improving our documentation.

Sincerely,

Software Development Support Group

Nintendo of America

mailto:support@noa.com

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 22  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

Appendix A Glossary
VRAM

Video RAM. That is, random-access memory that is dedicated to storage of data used to generate
pictures which change over time. On CTR, VRAM is only accessible via the PICA GPU.

FCRAM

“Fast Cycle RAM”. This refers to a particular manufacturing implementation of random-access
memory developed by Fujitsu Semiconductor Limited. It has very good speed of access. On CTR, the
main memory consists of FCRAM (as opposed to SRAM, DRAM, or other RAM implementation).

DMA Controller / DMA

Direct Memory Access. DMA refers to the ability of a piece of hardware to access memory on its own,
as opposed to requiring an intermediate piece of hardware to perform memory transactions on its
behalf.

A DMA Controller is a configurable piece of hardware that can be programmed to load and store
memory in specific ways.

DMA (verb)

The act of transferring memory from one location to another without the use of a CPU or other
intermediary device.

Command Request

A PICA operation request which is sent to PICA by the nngx driver. These are high-level instructions
such as “Render”, “Copy texture out”, “Load Texture in”, “Clear Buffer”, etc.

Register Update Command packet

Entity of 64-bits (or multiples thereof) that contain {address, data} update information for PICA.

3d Command Buffer

A memory buffer owned by a Command List Object. It is used to hold Register Update Command
packets.

Command Request list

A memory buffer owned by a Command List Object. It is used to hold Command Requests.

Command List Object

An entity used by the nngx driver to manage processing of the PICA GPU. Games access these via
nngx API calls.

Display List

A fixed block of GPU- or system-specific command data. The data is in whatever native format is
needed by the hardware.

CTR Developer's Guide Graphics: Command Lists

 2010-2011 Nintendo 23 CTR-06-0036-001-B
CONFIDENTIAL Released: June 20, 2011

Display List playback

The act of having a GPU fetch and execute commands stored in a display list. This usually results in
an object being drawn.

Zero State

The set of all GPU states that a developer considers to be the “base state” of the GPU for a particular
game title. It is used as a reference point against which all other state is set, and if employed should
be the state of the GPU both before and after a one or more instances of an object are drawn.

The game would configure the GPU into the Zero State as part of its initialization routine.

Zero State Delta

For any given object, this is the set of state changes needed to get the GPU from the Zero State to
the Initial Object State.

Initial Object State

For any given object, this is the [full] state of the GPU immediately before said object is drawn.

Final Object State

For any given object, this is the [full] state of the GPU immediately after said object is drawn.

Final to Initial Object State

For any given object, this is the set of GPU state changes required to reconfigure the GPU from the
final object state to the initial object state.

ULCD

Nintendo refers to the upper, stereoscopic LCD display as ULCD when the system is configured to
render both left-eye and right-eye views for stereoscopic image display.

Client

A processing device in a system that is connected to the main system bus. Items such as CPUs,
GPUs, audio processors, and main memory are all clients that are typically attached to a common
bus in a system.

Graphics: Command Lists CTR Developer's Guide

CTR-06-0036-001-B 24  2010-2011 Nintendo
Released: June 20, 2011 CONFIDENTIAL

Revision History
Revision Date Description

2011/06/20 Added information on high-performance rendering techniques.

2010/10/11 Initial version.

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

© 2010-2011 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	1 Introduction
	1.1 Relevant Architectural Details
	1.2 Primitives
	1.2.1 Command Requests
	1.2.2 Command List Object
	1.2.3 3d Command Buffer
	1.2.4 Register Update Commands

	2 Standard Command List Object Operation
	2.1 Accumulate
	2.2 Run
	2.3 Clear
	2.4 Basic list management

	3 Advanced topics
	3.1 “Display Lists”
	3.2 GPU State Management
	3.2.1 “Zero State” and deltas
	3.2.2 SDK Support for state management
	3.2.2.1 Caution 1
	3.2.2.2 Caution 2

	3.3 Copying data vs. referencing existing data
	3.4 Other Cautions

	4 Notes about the DMPGL driver
	5 Tips for Drawing Stereoscopic Scenes
	5.1 History
	5.2 Improved Method

	6 Summary
	Appendix A Glossary

